Understanding the multi-functionality and tissue-specificity of decellularized dental pulp matrix hydrogels for endodontic regeneration.

Acta Biomater

Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China. Electronic address:

Published: June 2024

Dental pulp is the only soft tissue in the tooth which plays a crucial role in maintaining intrinsic multi-functional behaviors of the dentin-pulp complex. Nevertheless, the restoration of fully functional pulps after pulpitis or pulp necrosis, termed endodontic regeneration, remained a major challenge for decades. Therefore, a bioactive and in-situ injectable biomaterial is highly desired for tissue-engineered pulp regeneration. Herein, a decellularized matrix hydrogel derived from porcine dental pulps (pDDPM-G) was prepared and characterized through systematic comparison against the porcine decellularized nerve matrix hydrogel (pDNM-G). The pDDPM-G not only exhibited superior capabilities in facilitating multi-directional differentiation of dental pulp stem cells (DPSCs) during 3D culture, but also promoted regeneration of pulp-like tissues after DPSCs encapsulation and transplantation. Further comparative proteomic and transcriptome analyses revealed the differential compositions and potential mechanisms that endow the pDDPM-G with highly tissue-specific properties. Finally, it was realized that the abundant tenascin C (TNC) in pDDPM served as key factor responsible for the activation of Notch signaling cascades and promoted DPSCs odontoblastic differentiation. Overall, it is believed that pDDPM-G is a sort of multi-functional and tissue-specific hydrogel-based material that holds great promise in endodontic regeneration and clinical translation. STATEMENT OF SIGNIFICANCE: Functional hydrogel-based biomaterials are highly desirable for endodontic regeneration treatments. Decellularized extracellular matrix (dECM) preserves most extracellular matrix components of its native tissue, exhibiting unique advantages in promoting tissue regeneration and functional restoration. In this study, we prepared a porcine dental pulp-derived dECM hydrogel (pDDPM-G), which exhibited superior performance in promoting odontogenesis, angiogenesis, and neurogenesis of the regenerating pulp-like tissue, further showed its tissue-specificity compared to the peripheral nerve-derived dECM hydrogel. In-depth proteomic and transcriptomic analyses revealed that the activation of tenascin C-Notch axis played an important role in facilitating odontogenic regeneration. This biomaterial-based study validated the great potential of the dental pulp-specific pDDPM-G for clinical applications, and provides a springboard for research strategies in ECM-related regenerative medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2024.04.040DOI Listing

Publication Analysis

Top Keywords

endodontic regeneration
16
dental pulp
12
regeneration
8
matrix hydrogel
8
porcine dental
8
pddpm-g exhibited
8
exhibited superior
8
analyses revealed
8
extracellular matrix
8
decm hydrogel
8

Similar Publications

Treating apical fenestration in a previously endodontically treated tooth.

J Conserv Dent Endod

November 2024

Department of Conservative Dentistry and Endodontics, Yenepoya Dental College, Yenepoya (Deemed to be University), Mangalore, Karnataka, India.

Apical fenestration is a defect in the alveolar cortical plate, exposing the root without involving the alveolar bone margin, often linked to trauma, periodontal disease, and orthodontic treatment, leading to symptoms such as pain and abscesses from endodontic infections. This case report describes managing a mucosal fenestration in an endodontically treated tooth with nonsurgical root canal therapy and periodontal surgery. A 44-year-old male presented with mucosal fenestration and pain in the upper front jaw due to trauma and an inadequately treated root canal.

View Article and Find Full Text PDF

The clinical performance of high-viscosity glass ionomer-based and bulk-fill resin-based restorations in permanent teeth with occlusal or proximal cavities: a systematic review and meta-analysis.

Clin Oral Investig

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology School & Hospital of Stomatology, Wuhan University, Wuhan, China.

Objectives: To summarize and analyze existing evidence regarding the clinical performance of high-viscosity glass-ionomer-based materials (HVGIs) and bulk-fill resin-based composites (BFs) in patients with occlusal or proximal cavities in permanent teeth.

Materials And Methods: A literature search was conducted using PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), Embase, Scopus, and Web of Science (WOS) (last update: April 19th, 2024). Randomized control trials (RCTs), retrospective and prospective comparative cohorts were included.

View Article and Find Full Text PDF

Odontogenic exosomes simulating the developmental microenvironment promote complete regeneration of pulp-dentin complex in vivo.

J Adv Res

January 2025

Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 People's Republic of China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022 People's Republic of China. Electronic address:

Introduction: Establishing an optimized regenerative microenvironment for pulp-dentin complex engineering has become increasingly critical. Recently, exosomes have emerged as favorable biomimetic nanotherapeutic tools to simulate the developmental microenvironment and facilitate tissue regeneration.

Objectives: This study aimed to elucidate the multifaceted roles of exosomes from human dental pulp stem cells (DPSCs) that initiated odontogenic differentiation while sustaining mesenchymal stem cell (MSC) characteristics in odontogenesis, angiogenesis, and neurogenesis during pulp-dentin complex regeneration.

View Article and Find Full Text PDF

Expert consensus on pulpotomy in the management of mature permanent teeth with pulpitis.

Int J Oral Sci

January 2025

Department of Cariology and Endodontics, Wuhan University & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.

Pulpotomy, which belongs to vital pulp therapy, has become a strategy for managing pulpitis in recent decades. This minimally invasive treatment reflects the recognition of preserving healthy dental pulp and optimizing long-term patient-centered outcomes. Pulpotomy is categorized into partial pulpotomy (PP), the removal of a partial segment of the coronal pulp tissue, and full pulpotomy (FP), the removal of whole coronal pulp, which is followed by applying the biomaterials onto the remaining pulp tissue and ultimately restoring the tooth.

View Article and Find Full Text PDF

Background: The purpose of this study was to review the literature on the efficacy of different surgical regenerative methods for peri-implantitis treatment.

Methods: A preliminary search was conducted in seven electronic databases. The studies included in the analysis implemented surgical regenerative treatment in at least one study group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!