Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Microplastics are persistent pollutants discovered and extensively researched in marine, freshwater, and terrestrial ecosystems but have yet to receive attention in an atmospheric context. Although recent reports stated the presence of microplastics in the air, their global existence and distribution are not critically discussed to date. This review aimed to investigate the current status of research on atmospheric microplastics through bibliometric analysis and by comparing and summarising published research on global distribution. The review also provides a summary of methods that have been used to collect samples, identify microplastics, quantify their occurrence, and determine their transport mechanisms. The bibliometric analysis revealed that atmospheric microplastic studies predominantly originated in China. Clothing, vehicle, and tire materials were the major primary sources while house furniture, construction materials, landfills, urban dust, plastic recycling processes, and agricultural sludge were precursor secondary sources. Polyethylene, polypropylene, and polyethylene terephthalate microfibres have most frequently found in indoor and outdoor atmospheres. Level of urbanization and temporal or spatial distributions governs the fate of airborne microplastics, however, the knowledge gap in the retention and circulation of microplastics through the atmosphere is still large. Many challenges and limitations were identified in the methods used, presentation of data, aerodynamic processes facilitating atmospheric transport, and scarcity of research in spatially and temporally diverse contexts. The review concluded that there was a greater need for globalization of research, methods and data standardization, and emphasizes the potential for future research with atmospheric transportation modelling and thermochemical analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2024.124080 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!