Desalination reverse osmosis reject brine-based porous geopolymer (RO/GP) was produced and investigated as an improved adsorbent for phosphorus (P) removal from tainted seawater, brackish water, river water, and municipal wastewater effluent. The RO reject brine/geopolymer was produced by reacting metakaolin and fly ash with a Na-alkali activator and anhydrous RO brine as a sacrificial template. The influence of RO reject brine content on water absorption, porosity, mechanical, and structural properties were examined. The developed RO-based geopolymers exhibited the greatest porosity (58.3-84.2 % vol%), a significant ratio of open porosity to total porosity (67.7-92.1 %), and outstanding compression strength (3.6-10.4 MPa). The produced RO/GP structure has an adsorption capacity of 92.4 mg-P/g. The sequestration reaction of phosphorus by RO/GP is of pseudo-second-order kinetic behavior via Chi-squared (χ), RMSE, and determination coefficient (R) values. Regarding their agreement with Langmuir behavior, the phosphorus adsorption uptakes occur in homogeneous and monolayer states. The reaction is exothermic, spontaneous, and favorable. The RO/GP exhibits significant affinity for phosphorus co-existing with Cl, Na, SO, K, HCO, and Ca. The RO/GP shows high safety during the adsorption investigation, with a total cost of 0.32 $/kg-P.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.142202 | DOI Listing |
J Environ Manage
February 2025
Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar.
This study explores Qatar's utilisation of seawater to support food security, emphasising the innovative strategies and technological advancements to address the environmental and agricultural challenges posed by rejected brine from desalination processes. It examines various brine treatment and disposal methodologies, highlighting the environmental impacts and proposing sustainable solutions to mitigate these effects. The discussion further explores the potential of electrodialysis and other emerging technologies for converting rejected brine into valuable agricultural resources, thereby contributing to food security in arid regions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
The precise and rapid extraction of lithium from salt-lake brines is critical to meeting the global demand for lithium resources. However, it remains a major challenge to design ion-transport membranes with accurate recognition and fast transport path for the target ion. Here, we report a triazine covalent organic framework (COF) membrane with high resolution for Li and Mg that enables fast Li transport while almost completely inhibiting Mg permeation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Centre of Climate Studies, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India.
The immense energy footprint of desalination and brine treatment is a barrier to a green economy. Interfacial evaporation (IE) offers a sustainable approach to water purification by efficient energy conversion. However, conventional evaporators are susceptible to fluctuations in solar radiation and the salinity of handling liquid.
View Article and Find Full Text PDFWater Res
April 2025
College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institution Pollution Control & Ecology Security, Shanghai 200092, China. Electronic address:
Ion selective membranes with precise Mg/Li separation have attracted extensive interest in lithium extraction to circumvent the lithium supply shortage. However, realizing this target remains a significant challenge mainly due to a high concentration ratio of Mg/Li as well as the relatively close ionic hydration radius and chemical. Herein, inspired by the host-guest recognition between alkali-metal ions and crown ether (CE), a novel approach was proposed to regulate the membrane internal structure by introducing CE to strengthen the complexation between Li and CE.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Department of Engineering, Università degli Studi di Palermo, 90128 Palermo, Italy.
The valorization of ultra-concentrated seawater brines, named bitterns, requires preliminary purification processes, such as membrane filtration, before they can be fully exploited. This study investigates the performance of an ultrafiltration pilot plant aimed at separating organic matter and large particles from real bitterns. An empirical model for the bittern viscosity was developed to better characterize the membrane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!