The cost-effective treatment of sludge leachate (SL) with high nitrogen content and refractory dissolved organic matter (rDOM) has drawn increasing attention. This study employed, for the first time, a rDOM triggered denitratation-anammox continuous-flow process to treat landfill SL. Moreover, the mechanisms of exploiting rDOM from SL as an inner carbon source for denitratation were systematically analyzed. The results demonstrated outstanding nitrogen and rDOM removal performance without any external carbon source supplement. In this study, effluent concentrations of 4.27 ± 0.45 mgTIN/L and 5.58 ± 1.64 mgTN/L were achieved, coupled with an impressive COD removal rate of 65.17 % ± 1.71 %. The abundance of bacteria belonging to the Anaerolineaceae genus, which were identified as rDOM degradation bacteria, increased from 18.23 % to 35.62 %. As a result, various types of rDOM were utilized to different extents, with proteins being the most notable, except for lignins. Metagenomic analysis revealed a preference for directing electrons towards NO-N reductase rather than NO-N reductase, indicating the coupling of denitratation bacteria and anammox bacteria (Candidatus Brocadia). Overall, this study introduced a novel synergy platform for advanced nitrogen removal in treating SL using its inner carbon source. This approach is characterized by low energy consumption and operational costs, coupled with commendable efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.121678 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!