Tip-enhanced Raman spectroscopy (TERS) is a label-free analytical technique that characterizes molecular systems, potentially even with a nanometric resolution. In principle, the metallic plasmonic probe is illuminated with a laser beam generating the localized surface plasmons, which induce a strong local electric field enhancement in close proximity to the probe. Such field enhancement improves the Raman scattering cross-section from the sample volume localized near the probe apex. TERS provides a high spatial resolution and a great sensitivity, however, it is rather rarely used due to technical limitations causing unstable enhancement and the relative lack of data reproducibility. Despite many scientific efforts for the fabrication of effective TER probes providing robust TER enhancement still requires further investigations. In this work, we explore new possibilities based on preparation of scanning tunnelling microscopy (STM) plasmonic probes, since by nature of the tunnelling effect, they potentially could offer a very high spatial resolution in STM guided TERS experiments. Here we compare two methods of STM-TERS probe preparation for effective spectra acquisition. Our results strongly indicate that an application of square pulse voltage upon the etching procedure significantly improves the quality of the TER data over those obtained with a constant voltage one. To demonstrate the efficiency of our probes we present the results of hyperspectral TER mapping of the 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) monolayer deposited on an ultra-pure and atomically flat gold substrate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2024.124323DOI Listing

Publication Analysis

Top Keywords

plasmonic probes
8
field enhancement
8
high spatial
8
spatial resolution
8
fabrication plasmonic
4
probes
4
probes reproducible
4
reproducible nanospectroscopic
4
nanospectroscopic investigation
4
investigation lipid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!