A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Persistent production of multiple active species with copper doped zinc gallate nanoparticles for light-independent photocatalytic degradation of organic pollutants. | LitMetric

Persistent production of multiple active species with copper doped zinc gallate nanoparticles for light-independent photocatalytic degradation of organic pollutants.

J Colloid Interface Sci

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China. Electronic address:

Published: August 2024

Photocatalysis is considered as an environmentally friendly and sustainable method as it can produce active species to degrade pollutants. However, its applications are hindered by the turbidity of pollutants and the requirements for continuous or repeated in situ irradiation. To avoid the need for continuous in situ irradiation in the photocatalytic process, herein we report the doping of Cu(II) ions into zinc gallate (ZnGaO) as traps to capture photo-generated electrons. In this way, long lifetime charge release and separation were effectively achieved for the persistent degradation of organic dyes in wastewater. The Cu(II) doped ZnGaO (ZGC) nanoparticles with a small size about 7.7 nm synthesized via a hydrothermal method exhibited a persistent photocatalytic activity with continuous production of reactive oxygen species for at least 96 h without in situ irradiation due to its unique electronic structure and carrier transport path, and enabled to degrade 82.2 % of rhodamine B in 1 h. Further investigation revealed that the doped Cu(II) ions occupied the octahedral sites of ZGC and highly increased the persistent production and availability of active species for the persistent degradation of organic dyes under pre-illuminated conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.04.135DOI Listing

Publication Analysis

Top Keywords

active species
12
degradation organic
12
situ irradiation
12
persistent production
8
zinc gallate
8
cuii ions
8
persistent degradation
8
organic dyes
8
persistent
5
production multiple
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!