The adsorption process efficiently removes per- and polyfluoroalkyl substances (PFAS) from water, but managing exhausted adsorbents presents notable environmental and economic challenges. Conventional disposal methods, such as incineration, may reintroduce PFAS into the environment. Therefore, advanced regeneration techniques are imperative to prevent leaching during disposal and enhance sustainability and cost-effectiveness. This review critically evaluates thermal and chemical regeneration approaches for PFAS-laden adsorbents, elucidating their operational mechanisms, the influence of water quality parameters, and their inherent advantages and limitations. Thermal regeneration achieves notable desorption efficiencies, reaching up to 99% for activated carbon. However, it requires significant energy input and risks compromising the adsorbent's structural integrity, resulting in considerable mass loss (10-20%). In contrast, chemical regeneration presents a diverse efficiency landscape across different regenerants, including water, acidic/basic, salt, solvent, and multi-component solutions. Multi-component solutions demonstrate superior efficiency (>90%) compared to solvent-based solutions (12.50%), which, in turn, outperform salt (2.34%), acidic/basic (1.17%), and water (0.40%) regenerants. This hierarchical effectiveness underscores the nuanced nature of chemical regeneration, significantly influenced by factors such as regenerant composition, the molecular structure of PFAS, and the presence of organic co-contaminants. Exploring the conditional efficacy of thermal and chemical regeneration methods underscores the imperative of strategic selection based on specific types of PFAS and material properties. By emphasizing the limitations and potential of particular regeneration schemes and advocating for future research directions, such as exploring persulfate activation treatments, this review aims to catalyze the development of more effective regeneration processes. The ultimate goal is to ensure water quality and public health protection through environmentally sound solutions for PFAS remediation efforts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.134429DOI Listing

Publication Analysis

Top Keywords

chemical regeneration
16
regeneration
9
exhausted adsorbents
8
thermal chemical
8
water quality
8
multi-component solutions
8
pfas
6
water
5
regeneration exhausted
4
adsorbents pfas
4

Similar Publications

Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly distinct and produced lipids exclusively through de novo lipogenesis.

View Article and Find Full Text PDF

Purpose: Corneal alkali burns are severe ocular injuries characterized by intense inflammation, tissue damage, and vision impairment, with current treatments often insufficient in restoring corneal function and clarity. This study aimed to evaluate the therapeutic effects of recombinant thrombomodulin domain 1 (rTMD1) in the treatment of corneal alkali burns, focusing on its impact on inflammation, tissue repair, fibrosis, and neovascularization.

Methods: A murine model of corneal alkali burn was utilized to investigate the therapeutic potential of rTMD1.

View Article and Find Full Text PDF

'Nomadic' Hematopoietic Stem Cells Navigate the Embryonic Landscape.

Stem Cell Rev Rep

January 2025

Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India.

Hematopoietic stem cells are a unique population of tissue-resident multipotent cells with an extensive ability to self-renew and regenerate the entire lineage of differentiated blood cells. Stem cells reside in a highly specialized microenvironment with surrounding supporting cells, forming a complex and dynamic network to preserve and maintain their function. The survival, activation, and quiescence of stem cells are largely influenced by niche-derived signals, with aging niche contributing to a decline in stem cell function.

View Article and Find Full Text PDF

Mapping the molecular mechanism of zinc catalyzed Suzuki-Miyaura coupling reaction: a computational study.

Org Biomol Chem

January 2025

Department of Chemistry, CMS College Kottayam (Autonomous), Kottayam, Kerala, 686001, India.

The Suzuki-Miyaura Coupling (SMC) reaction is a powerful method for forming carbon-carbon bonds in organic synthesis. Recent advancements in SMC reactions have introduced first-row transition metal catalysts, with zinc garnering significant interest due to its cost-effective and eco-friendly nature. Despite progress in experimental protocols, the mechanistic details of zinc-catalyzed SMC reactions are limited.

View Article and Find Full Text PDF

Background: The 3D printing of macro- and mesoporous biomimetic grafts composed of polycaprolactone (PCL) infused with nanosized synthetic smectic clay is a promising innovation in biomaterials for bone tissue engineering (BTE). The main challenge lies in achieving a uniform distribution of nanoceramics across low to high concentrations within the polymer matrix while preserving mechanical properties and biological performance essential for successful osseointegration.

Methods: This study utilized 3D printing to fabricate PCL scaffolds enriched with nanosized synthetic smectic clay (LAP) to evaluate its effects on structural, chemical, thermal, mechanical, and degradative properties, with a focus on in vitro biological performance and non-toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!