Studies have reported substantial variability in emotion recognition ability (ERA) - an important social skill - but possible neural underpinnings for such individual differences are not well understood. This functional magnetic resonance imaging (fMRI) study investigated neural responses during emotion recognition in young adults (N = 49) who were selected for inclusion based on their performance (high or low) during previous testing of ERA. Participants were asked to judge brief video recordings in a forced-choice emotion recognition task, wherein stimuli were presented in visual, auditory and multimodal (audiovisual) blocks. Emotion recognition rates during brain scanning confirmed that individuals with high (vs low) ERA received higher accuracy for all presentation blocks. fMRI-analyses focused on key regions of interest (ROIs) involved in the processing of multimodal emotion expressions, based on previous meta-analyses. In neural response to emotional stimuli contrasted with neutral stimuli, individuals with high (vs low) ERA showed higher activation in the following ROIs during the multimodal condition: right middle superior temporal gyrus (mSTG), right posterior superior temporal sulcus (PSTS), and right inferior frontal cortex (IFC). Overall, results suggest that individual variability in ERA may be reflected across several stages of decisional processing, including extraction (mSTG), integration (PSTS) and evaluation (IFC) of emotional information.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cortex.2024.03.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!