The role of systemic therapy in primary or advanced and metastatic chordoma has been traditionally limited because of the inherent resistance to cytotoxic therapies and lack of specific or effective therapeutic targets. Despite resection and adjuvant radiation therapy, local recurrence rates in clival chordoma remain high and the risk of systemic metastases is not trivial, leading to significant morbidity and mortality. Recently, molecular targeted therapies (MTTs) and immune checkpoint inhibitors (ICIs) have emerged as promising therapeutic avenues in chordoma. In recent years, preclinical studies have identified potential targets based on intrinsic genetic dependencies, epigenetic modulators, or newly identified tumor-associated cell populations driving treatment resistance and recurrence. Nonetheless, the role of systemic therapies in the neoadjuvant or adjuvant setting for primary, locally progressive, and distant metastatic chordomas is still being investigated. Herein, an overview of current and emerging systemic treatment strategies in advanced clival chordoma is provided. Furthermore, several molecular biomarkers have been recently uncovered as potential predictors of the response to specific molecular therapeutics. The authors describe the recently discovered role of 1p36 and 9p21 deletions as biomarkers capable of guiding drug selection. Then they discuss completed and ongoing clinical trials of MTTs, including several tyrosine kinase inhibitors used as monotherapy or in combination, such as imatinib, sorafenib, dasatinib, and lapatinib, among others, as well as mammalian target of rapamycin inhibitors such as everolimus and rapamycin. They present their experience and other recent studies demonstrating vast benefits in advanced chordoma from ICIs. Additionally, they provide a brief overview of novel systemic strategies such as adoptive cell transfer (CAR-T and NK cells), oncolytic viruses, epigenetic targeting (KDM6, HDAC, and EZH2 inhibitors), and several promising preclinical studies with high translational potential. Finally, the authors present their institutional multidisciplinary protocol for the incorporation of systemic therapy for both newly diagnosed and recurrent chordomas based on molecular studies including upfront enrollment in MTT trials in patients with epidermal growth factor receptor upregulation or INI-1 deficiency or enrollment in ICI clinical trials for patients with high tumor mutational burden or high PD-L1 expression on tumor cells or in the tumor microenvironment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/2024.2.FOCUS2416 | DOI Listing |
Diabetes Obes Metab
January 2025
School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China.
Aims: To investigate the role of chemerin reduction in mediating exercise-induced Glucagon-like peptide-1 (GLP-1) secretion and the amelioration of pancreatic β-cell function in obesity.
Materials And Methods: Obesity models were established using wild-type and chemerin systemic knockout mice, followed by 8 weeks of moderate-intensity continuous aerobic exercise training. Serum chemerin levels, GLP-1 synthesis, glucose tolerance, pancreatic β-cell function, structure, and apoptosis were assessed.
Drug Des Devel Ther
January 2025
Center of Expertise for Lupus-, Vasculitis- and Complement-Mediated Systemic Diseases (Luvacs), Department of Internal Medicine - Nephrology Section, Leiden University Medical Center, Leiden, the Netherlands.
Recently, avacopan has been approved for the treatment of ANCA-associated vasculitis (AAV). Avacopan is an inhibitor of the C5a-receptor, which plays an important role in chemotaxis and the amplification loop of inflammation in AAV. In the most recent, international guidelines avacopan is recommended as steroid-sparing agents for the management of AAV.
View Article and Find Full Text PDFIntroduction: In USA, six million individuals with Sub-Saharan ancestry carry two high-risk variants, which increase the risk for kidney diseases. Whether APOL1 high-risk variants are independent risk factors for cardiovascular diseases is unclear and requires further investigation.
Methods: We characterized a mouse model to investigate the role of APOL1 in dyslipidemia and cardiovascular diseases.
Our knowledge of which bone marrow cells affect red cell production is still incomplete. To explore the role of osteocytes in the process we performed bulk RNAseq of osteocytes isolated from control and phlebotomized mice. The top-upregulated gene following phlebotomy was , erythroferrone ( ).
View Article and Find Full Text PDFTaiwan J Ophthalmol
December 2024
Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Wide field retinal imaging has emerged as a transformative technology over the last few decades, revolutionizing our ability to visualize the intricate landscape of the retina. By capturing expansive retinal areas, these techniques offer a panoramic view going beyond traditional imaging methods. In this review, we explore the significance of retinal imaging-based biomarkers to help diagnose ocular and systemic conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!