Broadband frequency comb generation through cascaded quadratic nonlinearity remains experimentally untapped in free-space cavities with bulk χ materials mainly due to the high threshold power and restricted ability of dispersion engineering. Thin-film lithium niobate (LN) is a good platform for nonlinear optics due to the tight mode confinement in a nano-dimensional waveguide, the ease of dispersion engineering, large quadratic nonlinearities, and flexible phase matching via periodic poling. Here we demonstrate broadband frequency comb generation through dispersion engineering in a thin-film LN microresonator. Bandwidths of 150 nm (80 nm) and 25 nm (12 nm) for center wavelengths at 1560 and 780 nm are achieved, respectively, in a cavity-enhanced second-harmonic generation (doubly resonant optical parametric oscillator). Our demonstration paves the way for pure quadratic soliton generation, which is a great complement to dissipative Kerr soliton frequency combs for extended interesting nonlinear applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.523920DOI Listing

Publication Analysis

Top Keywords

broadband frequency
12
frequency comb
12
comb generation
12
dispersion engineering
12
generation cascaded
8
cascaded quadratic
8
quadratic nonlinearity
8
thin-film lithium
8
lithium niobate
8
engineering thin-film
8

Similar Publications

We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery.

View Article and Find Full Text PDF

Terahertz (THz) generation via photomixing on photoconductive antenna using twin delayed chirped pulses provides a long THz pulse with a narrow bandwidth. To generate a long pulse with a broad bandwidth, we propose a new, to the best of our knowledge, method that combines two long optical pulses with opposite chirps. The pulses exhibit temporal distributions of their instantaneous frequencies with opposite slopes.

View Article and Find Full Text PDF

We investigate the enhanced terahertz generation in the organic crystal BNA when pumped by compressed high-energy ytterbium laser pulses. By compressing the pump pulses from 170 fs down to 43 fs using an argon-filled hollow-core fiber and chirped mirrors, the terahertz conversion efficiency is increased by 2.4 times, leading to the generation of multi-microjoule terahertz pulses with a frequency spectrum almost twice as wide, extending up to 19 THz.

View Article and Find Full Text PDF

In this work, a specially designed multilayer indium tin oxide (ITO) mesh structure metasurface was proposed as a microwave absorber, achieving both excellent angle-insensitive broadband absorption and high shielding effectiveness (SE). It features gradually changing surface resistance ( ), to expand the absorption bandwidth while maintaining high SE. Also, a folded square ring metasurface was designed to effectively suppress surface wave grating lobes, as well as to reduce the unit size of the metasurface and thus the absorber.

View Article and Find Full Text PDF

A circular waveguide-fed conical horn antenna is fabricated using two-photon lithography (TPL) and integrated with a spintronic terahertz radiation emitter source to provide enhanced radiation directivity. In comparison to the bare terahertz radiation source, incorporating the antenna permits a spectral density gain up to 20.5 dB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!