We demonstrate a multichannel entropy loading mechanism in an optical frequency comb-based coherent communication system. In high-capacity wavelength division multiplexing communications, the individual laser sources can be replaced by an optical frequency comb, thus reducing the complexity and energy consumption of the transmitter. However, the power variation among different comb lines will lead to performance discrepancies. Spectral flattening filters can be adopted to suppress the variation at the expense of an additional system loss. Alternatively, by applying probabilistic shaping, we have implemented multichannel entropy loading to facilitate a continuous adaptation of the source entropy. The data rate can be dynamically allocated according to the performance of each channel. Through the loading scheme, the non-uniform performances across the channels are effectively mitigated, achieving a capacity enhancement of 34.91 Gbit/s.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.519159 | DOI Listing |
Int J Biol Macromol
January 2025
Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China.
To date, it has been regarded as one of the most challenging issues to construct novel adsorbents possessing excellent adsorption performance toward heavy metals including copper ions (Cu(II)). Especially, it is controversy about the structural characteristics of chitosan-based adsorbents adsorbed with Cu(II) ions, which could function as new adsorbents. In this study, we adopt a freeze-drying process to synthesize honeycomb-like chitosan hydrogel beads crosslinked with citric acid (cCHBs), further characterize the microstructures of cCHBs and eventually reveal the thermodynamics equations for the removal of target Cu(II).
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Aerospace Engineering, Xi'an Jiaotong University, West Xianning Road 28, Xi'an 710049, China.
The aim of this paper is to investigate the effect of TiC addition on the microstructure, microhardness, and wear resistance of the medium-entropy alloy Co37Cr28Ni31Al2Ti2, which is suitable for applications in aerospace, automotive, and energy industries due to its high strength and wear resistance. The samples containing 0, 10, 20, and 40 wt.% of TiC were synthesized.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Laboratory for Testing and Materials, Department of Mechanics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 157 73 Athens, Greece.
The fracture process of heterogeneous materials is studied here in the framework of the discipline of Non-Extensive Statistical Mechanics. Acoustic emission data provided by an experimental protocol with concrete specimens, plain or fiber-reinforced, under bending are taken advantage of. This innovation of the study lies in the fact that the analysis of the acoustic activity is implemented in terms of the energy content of the acoustic signals rather than of their interevent time or their interevent distance.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
School of Food Science and Engineering, Hainan University, Haikou, People's Republic of China.
Background: This study aimed to elucidate the transport mechanism of lycopene-loaded nanomicelles to improve intestinal absorption of lycopene. The interactive mechanism between lycopene and nanomicelles was investigated through isothermal titration calorimetry (ITC). The cytotoxicity, cellular uptake, endocytosis, and intracellular transport pathways of lycopene-loaded nanomicelles were investigated using the Caco-2 cell model.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
Advanced Network Research Laboratories, NEC Corporation, Kawasaki 211-8666, Kanagawa, Japan.
We demonstrated the coexistence of an S-band CV-QKD signal with fully loaded C+L-band classical signals for the first time. The secret key rate of the S-band QKD system was 986 kbps with the C+L-band WDM signals transmitted through a 20 km G.654.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!