Rich essential properties of silicon-substituted graphene nanoribbons: a comprehensive computational study.

Phys Chem Chem Phys

Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam.

Published: June 2024

The diverse structural, electronic, and magnetic properties of silicon (Si)-substituted armchair and zigzag graphene nanoribbons (AGNRs and ZGNRs) were investigated using spin-polarized density functional theory (DFT) calculations. Pristine AGNRs belong to a nonmagnetic semiconductor with a direct bandgap of 1.63/1.92 eV determined by PBE/HSE06 functionals. Under various Si substitutions, nonmagnetic bandgaps were tuned at 1.49/1.87, 1.06/1.84, 0.81/1.45, 1.04/1.71, 0.89/1.05, and 2.38/3.0 eV (PBE/HSE06) in the single Si edge-, single Si non-edge-, double Si -, double Si -, double Si -, and 100% Si-substituted AGNR configurations, respectively. Meanwhile, pristine ZGNRs displayed antiferromagnetic semiconducting behavior with a spin degenerate bandgap of 0.52/0.81 eV (PBE/HSE06) and becomes a ferromagnetic semimetal in the single Si configurations or an unusual ferromagnetic semiconductor in the 100% Si configuration. Under the developed first-principles theoretical framework, the formation of quasi π (C-2p and Si-3p) and quasi σ (C-2s, -2p and Si-3s and -3p) bands was identified in the Si-substituted configurations. These quasi π and quasi σ bands showed weak separation, resulting in weak quasi sp hybridization in Si-C bonds, in which the identified hybridization mechanism was a strong evidence for the formation of stable planar 1D structures in the Si-substituted configurations. Our complete revelation of the essential properties of Si-substituted GNRs can provide a complete understanding of their chemically doped 1D materials for various practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp00290cDOI Listing

Publication Analysis

Top Keywords

essential properties
8
graphene nanoribbons
8
double double
8
si-substituted configurations
8
si-substituted
5
quasi
5
rich essential
4
properties silicon-substituted
4
silicon-substituted graphene
4
nanoribbons comprehensive
4

Similar Publications

"The Brain is…": A Survey of the Brain's Many Definitions.

Neuroinformatics

January 2025

Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA, 90024, USA.

A reader of the peer-reviewed neuroscience literature will often encounter expressions like the following: 'the brain is a dynamic system', 'the brain is a complex network', or 'the brain is a highly metabolic organ'. These expressions attempt to define the essential functions and properties of the mammalian or human brain in a simple phrase or sentence, sometimes using metaphors or analogies. We sought to survey the most common phrases of the form 'the brain is…' in the biomedical literature to provide insights into current conceptualizations of the brain.

View Article and Find Full Text PDF

Manipulating the optical landscape of single quantum dots (QDs) is essential to increase the emitted photon output, enhancing their performance as chemical sensors and single-photon sources. Micro-optical structures are typically used for this task, with the drawback of a large size compared to the embedded single emitters. Nanophotonic architectures hold the promise to modify dramatically the emission properties of QDs, boosting light-matter interactions at the nanoscale, in ultracompact devices.

View Article and Find Full Text PDF

Ion Networks in Water-based Li-ion Battery Electrolytes.

Acc Chem Res

January 2025

Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.

ConspectusWater-in-salt electrolytes (WiSEs) are promising electrolytes for next-generation lithium-ion batteries (LIBs), offering critical advantages like nonflammability and improved safety. These electrolytes have extremely high salt concentrations and exhibit unique solvation structures and transport mechanisms dominated by the formation of ion networks and aggregates. These ion networks are central to the performance of WiSEs, govern the transport properties and stability of the electrolyte, deviating from conventional dilute aqueous or organic electrolytes.

View Article and Find Full Text PDF

Novel archaeal ribosome dimerization factor facilitating unique 30S-30S dimerization.

Nucleic Acids Res

January 2025

Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.

Protein synthesis (translation) consumes a substantial proportion of cellular resources, prompting specialized mechanisms to reduce translation under adverse conditions. Ribosome inactivation often involves ribosome-interacting proteins. In both bacteria and eukaryotes, various ribosome-interacting proteins facilitate ribosome dimerization or hibernation, and/or prevent ribosomal subunits from associating, enabling the organisms to adapt to stress.

View Article and Find Full Text PDF

Fast-neutron reactors are an important representative of Generation IV nuclear reactors, and due to the unique structure and material properties of fast reactor fuel, traditional mechanical cutting methods are not applicable. In contrast, laser cutting has emerged as an ideal alternative. However, ensuring the stability of optical fibers and laser cutting heads under high radiation doses, as well as maintaining cutting quality after irradiation, remains a significant technical challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!