AI Article Synopsis

  • The exact cause of Parkinson's disease (PD) remains unclear, but it's related to reduced dopamine levels in the brain.
  • Researchers used Mendelian randomization to analyze genetic links between immune cell characteristics and PD, evaluating data from the largest Genome-Wide Association Study (GWAS) to date.
  • While multiple immune cell phenotypes showed no significant effects on PD after correction for multiple comparisons, some immune phenotypes did have nominal associations, suggesting a complex relationship between immune cells and PD that warrants further investigation.

Article Abstract

The exact etiology of Parkinson's disease (PD), a degenerative disease of the central nervous system, is unclear. It is currently believed that its main pathological basis is a decrease in dopamine concentration in the striatum of the brain. Although many researchers have previously focused on the critical role of the immune response in PD, there has been a lack of valid genetic evidence for a causal association between specific immune cell traits and phenotypes and PD. We employed Mendelian randomization (MR) as an analytical method to effectively assess genetic associations between exposure and outcome. Based on the largest Genome-Wide Association Study (GWAS) dataset to date, causal associations between multiple immune cell phenotypes and PD were validly assessed, controlling for confounding factors by using single-nucleotide polymorphisms (SNPs), which are genetic instrumental variables that are randomly assigned and not subject to any causality. By testing 731 immune cell phenotypes and their association with PD, the results of inverse variance weighting (IVW) analysis suggested that after Bonferroni correction multiple immune cell phenotypes had no statistically significant effect on PD. It is worth mentioning that some phenotypes with unadjusted values ( < 0.05), including 40 immune phenotypes, that were located on the cDC panel, the Treg panel, the Maturation stages of T cell panel, the TBNK panel, the B cell panel, the Myeloid cell panel, and the Monocyte panel were considered to have nominal associations with PD. In addition, PD could have an effect on certain immunophenotypes located on the Myeloid cell panel and the Monocyte panel; the specific immunophenotypic results and statistical analysis values are shown in the text. The results of sensitivity analyses suggested that none of these observed the presence of horizontal pleiotropy. Our study identified a close link between immune cells and PD, and the results of this study provide ideas for the study of the immune mechanism of PD and the exploration of effective therapeutic means. In this study, based on the GWAS Immunophenotyping Database, a Mendelian randomization approach was used to assess the genetic causal associations between 731 immunophenotypes and traits and Parkinson's disease (PD), which not only provides a reference for the immune response mechanism of PD but also provides ideas for exploring the effective diagnosis and treatment of PD.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00481.2023DOI Listing

Publication Analysis

Top Keywords

immune cell
20
cell phenotypes
16
cell panel
16
multiple immune
12
parkinson's disease
12
mendelian randomization
12
immune
10
cell
9
panel
9
genetic causal
8

Similar Publications

Objective: Therapeutic interventions for epithelial ovarian cancer (EOC) have increased greatly over the last decade but improvements outside of biomarker selected therapies have been limited. There remains a pressing need for more effective treatment options that can prolong survival and enhance the quality of life of patients with EOC. In contrast to the significant benefits of immunotherapy with immune checkpoint inhibitors (CPI) seen in many solid tumors, initial experience in EOC suggests limited efficacy of CPIs monotherapy.

View Article and Find Full Text PDF

Clinical Features: Sickle cell patients may develop a multitude of antibodies and experience life-threatening events with transfusion such as hyperhemolysis syndrome or delayed hemolytic transfusion reaction. Further transfusion may not be possible in such cases.

Therapeutic Challenge: When conventional blood products are not available for transfusion yet the patient requires additional oxygen-carrying support, artificial oxygen carriers may be required.

View Article and Find Full Text PDF

Enhanced safety and efficacy profile of CD40 antibody upon encapsulation in pHe-triggered membrane-adhesive nanoliposomes.

Nanomedicine (Lond)

January 2025

Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.

Aim: To develop pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL) of CD40a to enhance anti-tumor activity in pancreatic cancer while reducing systemic toxicity.

Materials And Methods: A small library of nanoliposomes (NL) with various lipid compositions were synthesized to prepare pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL). Physical and functional characterization of pHTANL-CD40a was performed via dynamic light scattering (DLS), Transmission Electron Microscopy (TEM), confocal microscopy, and flow cytometry.

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD) induces an imbalance in T helper (Th) 17/regulatory T (Treg) cells that contributes to of the dysregulation of inflammation. Exercise training can modulate the immune response in healthy subjects.

Objective: We aimed to evaluate the effects of exercise training on Th17/Treg responses and the differentiation of Treg phenotypes in individuals with COPD.

View Article and Find Full Text PDF

Regulation of T Cell Glycosylation by MXene/β-TCP Nanocomposite for Enhanced Mandibular Bone Regeneration.

Adv Healthc Mater

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!