The exact etiology of Parkinson's disease (PD), a degenerative disease of the central nervous system, is unclear. It is currently believed that its main pathological basis is a decrease in dopamine concentration in the striatum of the brain. Although many researchers have previously focused on the critical role of the immune response in PD, there has been a lack of valid genetic evidence for a causal association between specific immune cell traits and phenotypes and PD. We employed Mendelian randomization (MR) as an analytical method to effectively assess genetic associations between exposure and outcome. Based on the largest Genome-Wide Association Study (GWAS) dataset to date, causal associations between multiple immune cell phenotypes and PD were validly assessed, controlling for confounding factors by using single-nucleotide polymorphisms (SNPs), which are genetic instrumental variables that are randomly assigned and not subject to any causality. By testing 731 immune cell phenotypes and their association with PD, the results of inverse variance weighting (IVW) analysis suggested that after Bonferroni correction multiple immune cell phenotypes had no statistically significant effect on PD. It is worth mentioning that some phenotypes with unadjusted values ( < 0.05), including 40 immune phenotypes, that were located on the cDC panel, the Treg panel, the Maturation stages of T cell panel, the TBNK panel, the B cell panel, the Myeloid cell panel, and the Monocyte panel were considered to have nominal associations with PD. In addition, PD could have an effect on certain immunophenotypes located on the Myeloid cell panel and the Monocyte panel; the specific immunophenotypic results and statistical analysis values are shown in the text. The results of sensitivity analyses suggested that none of these observed the presence of horizontal pleiotropy. Our study identified a close link between immune cells and PD, and the results of this study provide ideas for the study of the immune mechanism of PD and the exploration of effective therapeutic means. In this study, based on the GWAS Immunophenotyping Database, a Mendelian randomization approach was used to assess the genetic causal associations between 731 immunophenotypes and traits and Parkinson's disease (PD), which not only provides a reference for the immune response mechanism of PD but also provides ideas for exploring the effective diagnosis and treatment of PD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00481.2023 | DOI Listing |
Gynecol Oncol
January 2025
GOG Foundation, Florida Cancer Specialists and Research Institute, West Palm Beach, FL 33401, United States of America. Electronic address:
Objective: Therapeutic interventions for epithelial ovarian cancer (EOC) have increased greatly over the last decade but improvements outside of biomarker selected therapies have been limited. There remains a pressing need for more effective treatment options that can prolong survival and enhance the quality of life of patients with EOC. In contrast to the significant benefits of immunotherapy with immune checkpoint inhibitors (CPI) seen in many solid tumors, initial experience in EOC suggests limited efficacy of CPIs monotherapy.
View Article and Find Full Text PDFAm J Ther
January 2025
Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA.
Clinical Features: Sickle cell patients may develop a multitude of antibodies and experience life-threatening events with transfusion such as hyperhemolysis syndrome or delayed hemolytic transfusion reaction. Further transfusion may not be possible in such cases.
Therapeutic Challenge: When conventional blood products are not available for transfusion yet the patient requires additional oxygen-carrying support, artificial oxygen carriers may be required.
Nanomedicine (Lond)
January 2025
Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.
Aim: To develop pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL) of CD40a to enhance anti-tumor activity in pancreatic cancer while reducing systemic toxicity.
Materials And Methods: A small library of nanoliposomes (NL) with various lipid compositions were synthesized to prepare pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL). Physical and functional characterization of pHTANL-CD40a was performed via dynamic light scattering (DLS), Transmission Electron Microscopy (TEM), confocal microscopy, and flow cytometry.
Pulmonology
December 2025
Laboratory of Experimental Therapeutics, LIM-20, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil.
Background: Chronic obstructive pulmonary disease (COPD) induces an imbalance in T helper (Th) 17/regulatory T (Treg) cells that contributes to of the dysregulation of inflammation. Exercise training can modulate the immune response in healthy subjects.
Objective: We aimed to evaluate the effects of exercise training on Th17/Treg responses and the differentiation of Treg phenotypes in individuals with COPD.
Adv Healthc Mater
January 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!