Exploring mounting solutions for cryogenically cooled thin crystal optics in high power density x-ray free electron lasers.

Rev Sci Instrum

SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.

Published: May 2024

This study investigates three mounting methods-clamping, soldering, and a hybrid clamping-soldering approach-for cryogenically cooled thin diamond crystals crucial to stable operation of X-ray Free Electron Laser (XFEL) systems. While clamping methods exhibit temperature resilience and flexibility, meticulous design is required to prevent stress-induced warping and reduce thermal contact area. Soldering methods offer reliable mechanical and thermal bonding but encounter challenges due to the coefficient of thermal expansion mismatch at cryogenic temperatures. The hybrid method, integrating clamping and soldering with strain relief cuts, effectively mitigates overall distortion caused by mounting and XFEL thermal loads. These findings offer a novel mounting solution for high-performance x-ray optics in XFEL research and applications, ensuring stability and optimal functionality in cryogenic conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0191095DOI Listing

Publication Analysis

Top Keywords

cryogenically cooled
8
cooled thin
8
x-ray free
8
free electron
8
exploring mounting
4
mounting solutions
4
solutions cryogenically
4
thin crystal
4
crystal optics
4
optics high
4

Similar Publications

Heat Transfer Analysis of Cryogenic EXLO Specimen Handling.

Microsc Microanal

January 2025

EXpressLO LLC, 5483 Lee St Unit 12, Lehigh Acres, FL 33971, USA.

A conduction heat transfer analysis of ex situ lift-out specimen handling under cryogenic conditions (cryo-EXLO) is performed and compared with experimentally determined temperature values using a type K thermocouple. Using a finite-volume solver for heat conduction, the analysis confirms that manipulation of a specimen by a probe above a working surface cooled at liquid nitrogen (LN2) temperatures can remain below the critical vitreous temperature up to several hundreds of micrometers above the working surface, allowing for ample distance for lift out and specimen manipulation. In addition, the temperature above the cryogenic shuttle sample holder working surface remains below the vitreous temperature for several tens of minutes without adding cryogen, yielding sufficient time to complete multiple manipulations.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) is an invaluable method of choice for anatomical and functional in vivo imaging of the brain. Still, accurate delineation of the brain structures remains a crucial task of MR image evaluation. This study presents a novel analytical algorithm developed in MATLAB for the automatic segmentation of cerebrospinal fluid (CSF) spaces in preclinical non-contrast MR images of the mouse brain.

View Article and Find Full Text PDF

Background: Poikiloderma of Civatte is a benign skin condition characterized by reticulate erythema and hyperpigmentation in sun-exposed areas, predominantly on the neck, cheeks, and chest. Chronic UV exposure leads to vascular proliferation and red cell extravasation resulting in hemosiderin and melanin deposition. While many light-based modalities have been utilized to treat the disorder, the significant vascularity makes it ideally suited for treatment with vascular lasers.

View Article and Find Full Text PDF

Characterisation at Cryogenic Temperatures of an Attenuator for an Application of Astrophysical Instrumentation with MKIDs.

Sensors (Basel)

December 2024

Laboratorio de Circuitos Integrados (LABIC), Departamento de Electrónica, Área de Instrumentación, Instituto de Astrofísica de Canarias (IAC), 38205 La Laguna, Tenerife, Spain.

The use of non-cryogenic certified commercial electronics for cryogenic applications may be attractive due to their cost and availability, but it also carries risks related to reliability, performance and thermal compatibility. The decision to use commercial components that are not certified for cryogenics instead of components specifically designed for such applications must be carefully weighed based on specific project needs and risk tolerances. This work presents the characterisation of an attenuator circuit at cryogenic temperatures used in a microwave kinetic inductance detector (MKID) readout system.

View Article and Find Full Text PDF

Multispectral Integrated Black Arsenene Phototransistors for High-Resolution Imaging and Enhanced Secure Communication.

ACS Nano

December 2024

State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai 200083, China.

The demand for broadband, room-temperature infrared, and terahertz (THz) detectors is rapidly increasing owing to crucial applications in telecommunications, security screening, nondestructive testing, and medical diagnostics. Current photodetectors face significant challenges, including high intrinsic dark currents and the necessity for cryogenic cooling, which limit their effectiveness in detecting low-energy photons. Here, we introduce a high-performance ultrabroadband photodetector operating at room temperature based on two-dimensional black arsenene (b-As) nanosheets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!