Numerous viruses have been found to exploit glycoconjugates expressed on human cells as their initial attachment factor for viral entry and infection. The virus-cell glycointeractome, when characterized, may serve as a template for antiviral drug design. Heparan sulfate proteoglycans extensively decorate the human cell surface and were previously described as a primary receptor for human metapneumovirus (HMPV). After respiratory syncytial virus, HMPV is the second most prevalent respiratory pathogen causing respiratory tract infection in young children. To date, there is neither vaccine nor drug available to prevent or treat HMPV infection. Using a multidisciplinary approach, we report for the first time the glycointeractome of the HMPV fusion (F) protein, a viral surface glycoprotein that is essential for target-cell recognition, attachment, and entry. Our glycan microarray and surface plasmon resonance results suggest that Galβ1-3/4GlcNAc moieties that may be sialylated or fucosylated are readily recognized by HMPV F. The bound motifs are highly similar to the -linked and linked glycans primarily expressed on the human lung epithelium. We demonstrate that the identified glycans have the potential to compete with the cellular receptors used for HMPV entry and consequently block HMPV infection. We found that lacto--neotetraose demonstrated the strongest HMPV binding inhibition in a cell infection assay. Our current findings offer an encouraging and novel avenue for the design of anti-HMPV drug candidates using oligosaccharide templates.IMPORTANCEAll cells are decorated with a dense coat of sugars that makes a sugar code. Many respiratory viruses exploit this sugar code by binding to these sugars to cause infection. Human metapneumovirus is a leading cause for acute respiratory tract infections. Despite its medical importance, there is no vaccine or antiviral drug available to prevent or treat human metapneumovirus infection. This study investigates how human metapneumovirus binds to sugars in order to more efficiently infect the human host. We found that human metapneumovirus binds to a diverse range of sugars and demonstrated that these sugars can ultimately block viral infection. Understanding how viruses can take advantage of the sugar code on our cells could identify new intervention and treatment strategies to combat viral disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11237588PMC
http://dx.doi.org/10.1128/jvi.01641-23DOI Listing

Publication Analysis

Top Keywords

human metapneumovirus
24
sugar code
12
human
10
viruses exploit
8
expressed human
8
infection
8
antiviral drug
8
hmpv
8
respiratory tract
8
drug prevent
8

Similar Publications

Background: To explore the effect of non-pharmacological interventions (NPIs) on respiratory pathogen profiles among hospitalized infants aged 0-3 months in Beijing during the coronavirus disease 2019 (COVID-19) pandemic.

Methods: Respiratory specimens were collected from 1,184 infants aged 0-3 months who were hospitalized for acute respiratory infection at the Children's Hospital affiliated with the Capital Institute of Pediatrics from January 2018 to December 2023. The data were divided into three groups-the pre-epidemic (January 2018 to December 2019), epidemic prevention and control (January 2020 to December 2022), and post-epidemic (January 2023 to December 2023) groups-based on the outbreak of COVID-19 and the implementation and termination of NPIs.

View Article and Find Full Text PDF

Objectives: To investigate the impact of COVID-19 pandemic measures on hospitalizations and the alterations and persistence of the epidemiological patterns of 12 common respiratory pathogens in children during the COVID-19 pandemic and after the cessation of the "zero-COVID-19" policy in southern China.

Methods: Respiratory specimens were collected from hospitalized children with acute respiratory infections at Shenzhen Children's Hospital from January 2020 to June 2024. Twelve common respiratory pathogens were detected using multiplex PCR.

View Article and Find Full Text PDF

Human metapneumovirus (HMPV) is an important causative agent of respiratory tract disease. Fundamental knowledge of the interaction between HMPV and the innate immune system could lead to the design of novel antiviral therapies. Previously, we demonstrated that HMPV M2-2 deletion mutants had hypermutated genomes and contained defective interfering particles (DIs), which are potent inducers of the IFN response.

View Article and Find Full Text PDF

Background: In recent months, Bordetella pertussis has reappeared after maintaining a low rate for many years. Although pertussis is usually characterized by a favorable course, several factors can contribute to the severity of the disease, such as mixed respiratory infections. In this study, we evaluate B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!