Intermolecular hydrogen bonding behavior of amino acid radical cations.

Org Biomol Chem

Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA.

Published: May 2024

Amino acid and peptide radicals are of broad interest due to their roles in biochemical oxidative damage, pathogenesis and protein radical catalysis, among others. Using density functional theory (DFT) calculations at the ωB97X-D/def2-QZVPPD//ωB97X-D/def2-TZVPP level of theory, we systematically investigated the hydrogen bonding between water and fourteen α-amino acids (Ala, Asn, Cys, Gln, Gly, His, Met, Phe, Pro, Sel, Ser, Thr, Trp, and Tyr) in both neutral and radical cation forms. For all amino acids surveyed, stronger hydrogen-bonding interactions with water were observed upon single-electron oxidation, with the greatest increases in hydrogen-bonding strength occurring in Gly, Ala and His. We demonstrate that the side chain has a significant impact on the most favorable hydrogen-bonding modes experienced by amino acid radical cations. Our computations also explored the fragmentation of amino acid radical cations through the loss of a COOH radical facilitated by hydrogen bonding. The most favorable pathways provided stabilization of the resulting cationic fragments through hydrogen bonding, resulting in more favorable thermodynamics for the fragmentation process. These results indicate that non-covalent interactions with the environment have a profound impact on the structure and chemical fate of oxidized amino acids.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4ob00301bDOI Listing

Publication Analysis

Top Keywords

hydrogen bonding
16
amino acid
16
acid radical
12
radical cations
12
amino acids
8
bonding favorable
8
amino
6
radical
6
intermolecular hydrogen
4
bonding
4

Similar Publications

Covalent Grafting of Graphene Quantum Dots onto Stepped TiO-Mediated Electronic Modulation for Electrocatalytic Hydrogen Evolution.

Inorg Chem

January 2025

School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou 225002, China.

The interaction between electrocatalytic active centers and their support is essential to the electrocatalytic performance, which could regulate the electronic structure of the metal centers but requires precise design. Herein, we report on covalent grafting of graphene quantum dots (GQDs) on stepped TiO as a support to anchoring cobalt phosphide nanoparticles (CoP/GQD/S-TiO) for electrocatalytic hydrogen evolution reaction (HER). The covalent ester bonds between GQDs and TiO endow enlarged anchoring sites to achieve highly dispersed electroactive CoP nanoparticles but, more importantly, provide an efficient electron-transfer pathway from TiO to GQDs which could regulate the electronic structure of CoP.

View Article and Find Full Text PDF

Binuclear silver(I) and copper(I) complexes, and , with bridging diphenylphosphine ligands were prepared. In , the silver(I) center is located inside a trigonal plane composed of three phosphorus donors from three separate and bridging dppm ligands. The fourth coordination site is filled with neighboring silver(I) ions.

View Article and Find Full Text PDF

Untangling the role of single-atom substitution on the improvement of the hydrogen evolution reaction of YNS MXene in acidic media.

Phys Chem Chem Phys

January 2025

Departamento de Física Aplicada - Instituto de Ciencia de Materiales, Matter at High Pressure (MALTA) Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr Moliner 50, Burjassot, 46100, Valencia, Spain.

The production of hydrogen (H) fuel through electrocatalysis is emerging as a sustainable alternative to conventional and environmentally harmful energy sources. However, the discovery of cost-effective and efficient materials for this purpose remains a significant challenge. In this study, we explore the potential of the transition-metal-substituted YNS MXene as a promising candidate for hydrogen production through the hydrogen evolution reaction (HER).

View Article and Find Full Text PDF

Selective adsorption of unmethylated DNA on ZnO nanowires for separation of methylated DNA.

Lab Chip

January 2025

Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan.

DNA methylation is a crucial epigenetic modification used as a biomarker for early cancer progression. However, existing methods for DNA methylation analysis are complex, time-consuming, and prone to DNA degradation. This work demonstrates selective capture of unmethylated DNAs using ZnO nanowires without chemical or biological modifications, thereby concentrating methylated DNA, particularly those with high methylation levels that can predict cancer risk.

View Article and Find Full Text PDF

Silicon/carbon (Si/C) materials have achieved commercial applications as a solution to the problems of large volume expansion and short lifespan of silicon-based anodes in lithium-ion batteries. However, the potential risk of structural fracture and localized differences in surface adsorption properties lead to difficulties in maintaining the structural integrity of Si/C anodes using conventional binders during repeated lithiation/delithiation. Herein, an aqueous binder (PVA-g-M) based on polyvinyl alcohol (PVA) grafted methacrylic acid (MAA) obtained by self-emulsifyingemulsion polymerization is reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!