Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nano/micromotors outperform Brownian motion due to their self-propulsive capabilities and hold promise as carriers for drug delivery across biological barriers such as the extracellular matrix. This study employs poly(2-(diethylamino)ethyl methacrylate) polymer brushes to enhance the collagenase-loading capacity of silica particle-based motors with the aim to systematically investigate the impact of gelatine viscosity, motors' size, and morphology on their propulsion velocity. Notably, 500 nm and 1 μm motors achieve similar speeds as high as ∼15 μm s in stiff gelatine-based hydrogels when triggered with calcium. Taken together, our findings highlight the potential of collagenase-based motors for navigating the extracellular matrix, positioning them as promising candidates for efficient drug delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3nr05712g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!