Quantum dots (QDs) have garnered a significant amount of attention as promising memristive materials owing to their size-dependent tunable bandgap, structural stability, and high level of applicability for neuromorphic computing. Despite these advantageous properties, the development of QD-based memristors has been hindered by challenges in understanding and adjusting the resistive switching (RS) behavior of QDs. Herein, we propose three types of InP/ZnSe/ZnS QD-based memristors to elucidate the RS mechanism, employing a thin poly(methyl methacrylate) layer. This approach not only allows us to identify which carriers (electron or hole) are trapped within the QD layer but also successfully demonstrates QD-based synaptic devices. Furthermore, to utilize the QD memristor as a synapse, long-term potentiation/depression (LTP/LTD) characteristics are measured, resulting in a low nonlinearity of LTP/LTD at 0.1/1. On the basis of the LTP/LTD characteristics, single-layer perceptron simulations were performed using the Extended Modified National Institute of Standards and Technology, verifying a maximum recognition rate of 91.46%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c01083 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!