Background And Aims: Cuproptosis has emerged as a significant contributor in the progression of various diseases. This study aimed to assess the potential impact of cuproptosis-related genes (CRGs) on the development of hepatic ischemia and reperfusion injury (HIRI).

Methods: The datasets related to HIRI were sourced from the Gene Expression Omnibus database. The comparative analysis of differential gene expression involving CRGs was performed between HIRI and normal liver samples. Correlation analysis, function enrichment analyses, and protein-protein interactions were employed to understand the interactions and roles of these genes. Machine learning techniques were used to identify hub genes. Additionally, differences in immune cell infiltration between HIRI patients and controls were analyzed. Quantitative real-time PCR and western blotting were used to verify the expression of the hub genes.

Results: Seventy-five HIRI and 80 control samples from three databases were included in the bioinformatics analysis. Three hub CRGs (NLRP3, ATP7B and NFE2L2) were identified using three machine learning models. Diagnostic accuracy was assessed using a receiver operating characteristic (ROC) curve for the hub genes, which yielded an area under the ROC curve (AUC) of 0.832. Remarkably, in the validation datasets GSE15480 and GSE228782, the three hub genes had AUC reached 0.904. Additional analyses, including nomograms, decision curves, and calibration curves, supported their predictive power for diagnosis. Enrichment analyses indicated the involvement of these genes in multiple pathways associated with HIRI progression. Comparative assessments using CIBERSORT and gene set enrichment analysis suggested elevated expression of these hub genes in activated dendritic cells, neutrophils, activated CD4 memory T cells, and activated mast cells in HIRI samples versus controls. A ceRNA network underscored a complex regulatory interplay among genes. The genes mRNA and protein levels were also verified in HIRI-affected mouse liver tissues.

Conclusion: Our findings have provided a comprehensive understanding of the association between cuproptosis and HIRI, establishing a promising diagnostic pattern and identifying latent therapeutic targets for HIRI treatment. Additionally, our study offers novel insights to delve deeper into the underlying mechanisms of HIRI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058647PMC
http://dx.doi.org/10.3389/fimmu.2024.1372441DOI Listing

Publication Analysis

Top Keywords

hub genes
16
machine learning
12
hiri
10
genes
10
immune cell
8
cell infiltration
8
infiltration hiri
8
cuproptosis-related genes
8
bioinformatics analysis
8
gene expression
8

Similar Publications

A comprehensive analysis to reveal the underlying molecular mechanisms of natural killer cell in thyroid carcinoma based on single-cell RNA sequencing data.

Discov Oncol

January 2025

The Department of Experimental Medicine, Meishan City People's Hospital, No. 288, South Fourth Section, Dongpo Avenue, Meishan, 620000, Sichuan, China.

Background: Thyroid carcinoma (THCA) is the most common cancer of the endocrine system. Natural killer (NK) cell play an important role in tumor immune surveillance. The aim of this study was to explore the possible molecular mechanisms involved in NK cell in THCA to help the management and treatment of the disease.

View Article and Find Full Text PDF

Utilising bioinformatics and systems biology methods to uncover the impact of dermatomyositis on interstitial lung disease.

Clin Exp Rheumatol

January 2025

Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.

Objectives: Dermatomyositis (DM) is frequently associated with interstitial lung disease (ILD); however, the molecular mechanisms underlying this association remain unclear. This study aimed to employ bioinformatics approaches to identify potential molecular mechanisms linking DM and ILD.

Methods: GSE46239 and GSE47162 were analysed to identify common differentially expressed genes (DEGs).

View Article and Find Full Text PDF

Hemorrhagic stroke is a known complication of glioma, yet the underlying mechanisms remain poorly understood. This study aims to investigate key biomarkers of glioma-related hemorrhage to provide insights into glioma molecular therapies. Data were obtained from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases to analyze differentially expressed genes (DEGs) in glioma by contrasting glioblastoma (GBM) with low-grade gliomas (LGGs).

View Article and Find Full Text PDF

The uncertain ferroptosis-related role of berberine in prostate cancer was explored using network pharmacology methodology. Integration of ferroptosis targets in prostate cancer from the Genecard database and berberine targets from the Traditional Chinese Medicine Systems Pharmacology and SwissTargetPrediction databases revealed 17 common targets. Among these, 10 hub genes, including CCNB1, CDK1, AURKA, AR, CDC42, ICAM1, TYMS, NTRK1, PTGS2, and SCD, were identified.

View Article and Find Full Text PDF

Objective: Juvenile dermatomyositis (JDM) is a complex autoimmune disease, and its pathogenesis remains poorly understood. Building upon previous research on the immunological and inflammatory aspects of JDM, this study aims to investigate the role of pyroptosis in the pathogenesis of JDM using a comprehensive bioinformatics approach.

Methods: Two microarray datasets (GSE3307 and GSE11971) were obtained from the Gene Expression Omnibus database, and a list of 62 pyroptosis-related genes was compiled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!