A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine. | LitMetric

Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine.

Front Psychiatry

Inverse Modeling and Machine Learning, Chair of Uncertainty, Institute of Software Engineering and Theoretical Computer Science, Faculty IV Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany.

Published: April 2024

Introduction: The COVID-19 pandemic has exacerbated mental health challenges, particularly depression among college students. Detecting at-risk students early is crucial but remains challenging, particularly in developing countries. Utilizing data-driven predictive models presents a viable solution to address this pressing need.

Aims: 1) To develop and compare machine learning (ML) models for predicting depression in Argentinean students during the pandemic. 2) To assess the performance of classification and regression models using appropriate metrics. 3) To identify key features driving depression prediction.

Methods: A longitudinal dataset (N = 1492 college students) captured T1 and T2 measurements during the Argentinean COVID-19 quarantine. ML models, including linear logistic regression classifiers/ridge regression (LogReg/RR), random forest classifiers/regressors, and support vector machines/regressors (SVM/SVR), are employed. Assessed features encompass depression and anxiety scores (at T1), mental disorder/suicidal behavior history, quarantine sub-period information, sex, and age. For classification, models' performance on test data is evaluated using Area Under the Precision-Recall Curve (AUPRC), Area Under the Receiver Operating Characteristic curve, Balanced Accuracy, F1 score, and Brier loss. For regression, R-squared (R2), Mean Absolute Error, and Mean Squared Error are assessed. Univariate analyses are conducted to assess the predictive strength of each individual feature with respect to the target variable. The performance of multi- vs univariate models is compared using the mean AUPRC score for classifiers and the R2 score for regressors.

Results: The highest performance is achieved by SVM and LogReg (e.g., AUPRC: 0.76, 95% CI: 0.69, 0.81) and SVR and RR models (e.g., R2 for SVR and RR: 0.56, 95% CI: 0.45, 0.64 and 0.45, 0.63, respectively). Univariate models, particularly LogReg and SVM using depression (AUPRC: 0.72, 95% CI: 0.64, 0.79) or anxiety scores (AUPRC: 0.71, 95% CI: 0.64, 0.78) and RR using depression scores (R2: 0.48, 95% CI: 0.39, 0.57) exhibit performance levels close to those of the multivariate models, which include all features.

Discussion: These findings highlight the relevance of pre-existing depression and anxiety conditions in predicting depression during quarantine, underscoring their comorbidity. ML models, particularly SVM/SVR and LogReg/RR, demonstrate potential in the timely detection of at-risk students. However, further studies are needed before clinical implementation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11059062PMC
http://dx.doi.org/10.3389/fpsyt.2024.1376784DOI Listing

Publication Analysis

Top Keywords

college students
12
models
10
depression
9
machine learning
8
learning models
8
depression argentinean
8
covid-19 quarantine
8
at-risk students
8
predicting depression
8
depression anxiety
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!