Introduction: Autistic individuals demonstrate greater variability and timing error in their motor performance than neurotypical individuals, likely due at least in part to atypical cerebellar characteristics and connectivity. These motor difficulties may differentially affect discrete as opposed to continuous movements in autistic individuals. Augmented auditory feedback has the potential to aid motor timing and variability due to intact auditory-motor pathways in autism and high sensitivity in autistic individuals to auditory stimuli.
Methods: This experiment investigated whether there were differences in timing accuracy and variability in autistic adults as a function of task (discontinuous vs. continuous movements) and condition (augmented auditory feedback vs. no auditory feedback) in a synchronization-continuation paradigm. Ten autistic young adults aged 17-27 years of age completed the within-subjects study that involved drawing circles at 800 milliseconds intervals on a touch screen. In the discontinuous task, participants traced a series of discrete circles and paused at the top of each circle for at least 60 milliseconds. In the continuous task, participants traced the circles without pausing. Participants traced circles in either a non-auditory condition, or an auditory condition in which they heard a tone each time that they completed a circle drawing.
Results: Participants had significantly better timing accuracy on the continuous timing task as opposed to the discontinuous task. Timing consistency was significantly higher for tasks performed with auditory feedback.
Discussion: This research reveals that motor difficulties in autistic individuals affect discrete timing tasks more than continuous tasks, and provides evidence that augmented auditory feedback may be able to mitigate some of the timing variability present in autistic persons' movements. These results provide support for future investigation on the use of music-based therapies involving auditory feedback to address motor dysfunction in autistic individuals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058991 | PMC |
http://dx.doi.org/10.3389/fnint.2024.1379208 | DOI Listing |
Healthcare (Basel)
January 2025
Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison Street, Suite 201, Chicago, IL 60612, USA.
Background/objectives: Gait retraining is widely used in orthopedic rehabilitation to address abnormal movement patterns. However, retaining walking modifications can be challenging without guidance from physical therapists. Real-time auditory biofeedback can help patients learn and maintain gait alterations.
View Article and Find Full Text PDFMol Brain
January 2025
Research Centre for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan.
Cognitive processes such as action planning and decision-making require the integration of multiple sensory modalities in response to temporal cues, yet the underlying mechanism is not fully understood. Sleep has a crucial role for memory consolidation and promoting cognitive flexibility. Our aim is to identify the role of sleep in integrating different modalities to enhance cognitive flexibility and temporal task execution while identifying the specific brain regions that mediate this process.
View Article and Find Full Text PDFJ Exp Psychol Hum Percept Perform
January 2025
School of Psychology, University of Sussex.
Human listeners have a remarkable capacity to adapt to severe distortions of the speech signal. Previous work indicates that perceptual learning of degraded speech reflects changes to sublexical representations, though the precise format of these representations has not yet been established. Inspired by the neurophysiology of auditory cortex, we hypothesized that perceptual learning involves changes to perceptual representations that are tuned to acoustic modulations of the speech signal.
View Article and Find Full Text PDFNat Commun
January 2025
Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
While animals readily adjust their behavior to adapt to relevant changes in the environment, the neural pathways enabling these changes remain largely unknown. Here, using multiphoton imaging, we investigate whether feedback from the piriform cortex to the olfactory bulb supports such behavioral flexibility. To this end, we engage head-fixed male mice in a multimodal rule-reversal task guided by olfactory and auditory cues.
View Article and Find Full Text PDFJMIR Aging
January 2025
Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos SP, Brazil.
Background: The prevalence of stroke is high in both males and females, and it rises with age. Stroke often leads to sensor and motor issues, such as hemiparesis affecting one side of the body. Poststroke patients require torso stabilization exercises, but maintaining proper posture can be challenging due to their condition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!