Maize is a globally important cereal crop, however, maize leaf disease is one of the most common and devastating diseases that afflict it. Artificial intelligence methods face challenges in identifying and classifying maize leaf diseases due to variations in image quality, similarity among diseases, disease severity, limited dataset availability, and limited interpretability. To address these challenges, we propose a residual-based multi-scale network (MResNet) for classifying multi-type maize leaf diseases from maize images. MResNet consists of two residual subnets with different scales, enabling the model to detect diseases in maize leaf images at different scales. We further utilize a hybrid feature weight optimization method to optimize and fuse the feature mapping weights of two subnets. We validate MResNet on a maize leaf diseases dataset. MResNet achieves 97.45% accuracy. The performance of MResNet surpasses other state-of-the-art methods. Various experiments and two additional datasets confirm the generalization performance of our model. Furthermore, thermodynamic diagram analysis increases the interpretability of the model. This study provides technical support for the disease classification of agricultural plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11059414PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e28264DOI Listing

Publication Analysis

Top Keywords

maize leaf
24
leaf diseases
12
disease classification
8
maize
8
leaf images
8
diseases maize
8
leaf
6
diseases
6
mresnet
5
multi-scale feature
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!