Development of high entropy alloys (HEAs): Current trends.

Heliyon

School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India.

Published: April 2024

A novel concept of developing multi-principal elements, or compositional complex alloys is referred as high-entropy alloys (HEAs). This review addresses the role of entropy in alloying additions along with the effect of various elements listed in the periodic table in forming the HEAs. Phase formation rules and the associated parameters along with their significance are discussed. The physical metallurgy technique is elaborated with reference to the high-entropy effect, severe lattice distortion effect, sluggish diffusion effect, and cocktail effects. Various types of HEAs such as light weight HEAs, nanoprecipitate HEAs, ultrafine-grained HEAs, dual-phase HEAS and TRIP/TWIN HEAs are discussed. Further, the effects of mechanical alloying in HEAs are presented. Finally, the microstructural effects and mechanical properties of HEAs are addressed with reference to the published literature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11059417PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e26464DOI Listing

Publication Analysis

Top Keywords

heas
11
alloys heas
8
effects mechanical
8
development high
4
high entropy
4
entropy alloys
4
heas current
4
current trends
4
trends novel
4
novel concept
4

Similar Publications

After a long-distance migration, Avars with Eastern Asian ancestry arrived in Eastern Central Europe in 567 to 568 CE and encountered groups with very different European ancestry. We used ancient genome-wide data of 722 individuals and fine-grained interdisciplinary analysis of large seventh- to eighth-century CE neighbouring cemeteries south of Vienna (Austria) to address the centuries-long impact of this encounter. We found that even 200 years after immigration, the ancestry at one site (Leobersdorf) remained dominantly East Asian-like, whereas the other site (Mödling) shows local, European-like ancestry.

View Article and Find Full Text PDF

Self-Reconstruction of High Entropy Alloys for Efficient Alkaline Hydrogen Evolution.

Small

January 2025

Institute for Sustainable Energy and Resources, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, China.

Alkaline water (HO) electrolysis is currently a commercialized green hydrogen (H) production technology, yet the unsatisfactory hydrogen evolution reaction (HER) performance severely limits its energy conversion efficiency and cost reduction. Herein, PtRuFeCoNi high entropy alloys (HEAs) is synthesized and subsequently exploited electrochemically induced structural oxidation processes to construct self-reconfigurable HEAs, as an efficient alkaline HER catalyst. The optimized self-reconstructed PtRuFeCoNi HEAs with the HEAs and cobalt rutheniate interface (HEAs-CoRuO) exhibits excellent alkaline HER performance, requiring just 11.

View Article and Find Full Text PDF

This work investigated the mechanical and catalytic degradation properties of FeMnCoCr-based high-entropy alloys (HEAs) with diverse compositions and porous structures fabricated via selective laser melting (SLM) additive manufacturing for wastewater treatment applications. The effects of Mn content (0, 30 at%, and 50 at%) and topological structures (gyroid, diamond, and sea urchin-inspired shell) on the compression properties and catalytic efficiency of the FeMnCoCr HEAs were discussed. The results indicated that an increase in the Mn content led to a phase structure transition that optimized mechanical properties and catalytic activities.

View Article and Find Full Text PDF

The cranium from the Octagon in Ephesos.

Sci Rep

January 2025

Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, A-1030, Vienna, Austria.

During excavations in 1929, a well-preserved skeleton was discovered in a sarcophagus in the Octagon at Ephesos (Turkey). For the following century, archaeologists have speculated about the identity of this obviously notable person. Repeated claim is that the remains could represent Arsinoë IV, daughter of Ptolemy XII, and younger (half-)sister of Cleopatra VII.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!