Introduction: Previous studies have shown that the velvet bean, an indigenous legume in Indonesia, possesses high protein content and bioactive compounds. However, the utilization of velvet beans in tempe production remains underexplored.
Methods: This study aims to address this research gap by investigating the physicochemical properties and sensory profiles of tempe made from velvet beans, both individually and in combination with soybean. The study involved the production of tempe using germinated and non-germinated velvet bean, soybean, and a soy-velvet bean combination (61:39% ratio). Physicochemical analyses, including hardness, firmness, colour, antioxidant capacity, proximate, pH, and titratable acidity, were conducted. Hedonic rating and Check-All-That-Apply (CATA) tests were also performed to assess the sensory attributes of fresh and fried tempe.
Results And Discussion: Germination treatment of velvet bean resulted in tempe with reduced hardness, firmness, antioxidant capacity, and pH levels compared to non-germinated velvet bean tempe. However, velvet bean tempe exhibited a darker colour, higher antioxidant capacity, higher pH levels, and lower titratable acidity compared to soybean tempe and soy-velvet bean combination tempe. The protein content in velvet bean tempe was found to be below the required threshold of 15%. Hedonic rating tests revealed that fresh and fried velvet bean tempe received lower scores than other samples. CATA tests identified specific sensory attributes essential for fresh and fried tempe, including beany aroma, white colour, nutty aroma, golden brown colour, solid and crunchy texture, umami taste, and nutty aftertaste. These findings provide valuable insights into the potential applications of velvet beans in tempe production and emphasize the significance of considering germination as a factor affecting the quality and sensory attributes of tempe.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058789 | PMC |
http://dx.doi.org/10.3389/fnut.2024.1383841 | DOI Listing |
Narra J
December 2024
Department of Nutrition, Faculty of Medicine Science, Universitas Brawijaya, Malang, Indonesia.
Velvet bean is a native Indonesian legume containing L-dopa, yet it remains underutilized. The aim of this study was to analyze the effects of different types of tempe (soybean, velvet bean, and their combination) on cognitive function, brain histology, dopamine levels, and serum β-amyloid in rats, as well as to identify the parameters most influencing cognitive function, including brain mass and volume, hippocampal neuron count, and dopamine and β-amyloid levels. An experimental study was conducted using a completely randomized design with one factor: the protein source of diet.
View Article and Find Full Text PDFPlant Dis
December 2024
Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, Jiangsu, China;
Faba bean (Vicia faba L.) is the fourth most cultivated temperate legume (Lyu et al., 2021).
View Article and Find Full Text PDFIn Silico Pharmacol
November 2024
Laboratory of Vascular Physiology and Medicine, Department of Physiology, Shri B.M.Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapur, Karnataka 586103 India.
Modulation of the Wnt/β-catenin signaling pathway may aid in discovering new medications for the effective management of pulmonary artery hypertension (PAH). Given the therapeutic potential of Mucuna pruriens in several diseases, the present study aimed to analyze interactions of different bioactive compounds of Mucuna pruriens plant seeds with Wnt/β-catenin pathway targeting its various components like Wnt 3a, Frizzled 1, LRP 5/6, β-catenin, Disheveled, cyclin D1 by in silico analysis. The proposed work is based on computational analysis including ADME/T properties, by a Swiss ADME server.
View Article and Find Full Text PDFCell Biochem Biophys
November 2024
Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
Parkinson's disease (PD) is a complex neurodegenerative disorder marked by the progressive loss of dopaminergic neurons in the substantia nigra. While current treatments primarily manage symptoms, there is increasing interest in alternative approaches, particularly the use of phytochemicals from medicinal plants. These natural compounds have demonstrated promising neuroprotective potential in preclinical studies by targeting key pathological mechanisms such as oxidative stress, neuroinflammation, and protein aggregation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!