Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
High internal phase emulsions (HIPEs) are potential stereolithography-based resins for producing innovative lightweight porous materials; however, the use of these resins has only been shown in bespoke stereolithography setups. These studies indicated that HIPEs tend to scatter the light during structuring through stereolithography, and can produce poorly defined and low-resolution structures, but the inclusion of light absorbers can drastically increase the printing resolution. In this study, we focused on the inclusion of biocompatible light absorbers within the resin and the compatibility of those resins with a commercial vat photopolymerization additive manufacturing (or stereolithography) setup. A surfactant (hypermer)-stabilized water-in-oil emulsion based on 2-ethylhexyl-acrylate and isobornyl-acrylate was used. For the light absorbers, both hydrophobic (beta-carotene) and hydrophilic (tartrazine) molecules were used, which dissolve in the organic phase and aqueous phase, respectively. It was found that using a combination of both beta-carotene and tartrazine provided the best stereolithography-based 3D printing resolution. In addition, the emulsion was stable for the duration of the printing process and showed a porous polyHIPE structure with open surface porosity. The formulation of these HIPE-based resins permits them to be used in a wide range of applications since complex structures could be fabricated from HIPEs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057525 | PMC |
http://dx.doi.org/10.1089/3dp.2022.0235 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!