Highly structured, molecularly imprinted polymer (MIP) networks for copper(II) ion sequestration have been realized using the additive manufacturing technology. Photopolymerizable formulations with acrylic functional monomers and two different porogens (water and methanol) in different ratios were studied to produce emulsions with 50 vol% of the internal phase. The results of morphological characterization indicate that all MIPs have cauliflower-like multiscale structures that change as a function of the solvent combination and fabrication process. X-ray fluorescence microscopy maps presented a layered structure and homogeneous distribution of copper in the printed MIP. Copper(II) ion adsorption-desorption tests were performed on MIPs prepared using a three-dimensional (3D) printing approach and MIPs prepared by bulk polymerization. Results indicate that the 3D printed MIP is able to absorb copper up to ten times more efficiently than the nonprinted one and the printed MIP with 100% water content has the highest imprint recognition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057543 | PMC |
http://dx.doi.org/10.1089/3dp.2022.0107 | DOI Listing |
J Chromatogr A
December 2024
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China. Electronic address:
A novel magnetic mesoporous fluorinated metal-organic framework material (FeO@MIP-206-F) has been synthesized specifically for application as an adsorbent for perfluoroalkyl carboxylic acids (PFCAs) extraction by magnetic solid-phase extraction (MSPE). The carefully designed FeO@MIP-206-F material features an appropriate porosity, open metal sites of Zr, and functional groups (fluorine and amino) conducive to the adsorption process. The distinctive architecture of the material endows it with exceptional extraction capabilities for PFCAs.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea. Electronic address:
Creatinine (Ctn) is a biomarker for chronic kidney disease (CKD). In this study, a highly sensitive and specific detection method for Ctn based on a molecularly imprinted polymer (MIP) based electrochemical biosensor was developed. Mxene (Mx), which has high absorption properties, was modified using carbon screen-printed electrodes (SPCE).
View Article and Find Full Text PDFTalanta
December 2024
Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK.
Diazepam (DZP) is a muscle-relaxing, anxiety-relieving sedative drug; nonetheless, it is also an addictive drug that may be abused. This work reports on the development of a novel electrochemical nanosensor for diazepam using SiO-encapsulated-3-mercaptopropionic acid-capped AuZnCeSeS quantum dots (QDs) overcoated with a molecularly imprinted polymer (MIP) on screen-printed carbon electrodes (SPCEs). Electrochemical, spectroscopic and electron microscopic characterization of the nanomaterial and modified electrode surface was carried out and is reported herein.
View Article and Find Full Text PDFRSC Adv
December 2024
Department of Chemistry, Faculty of Science, Cairo University 12613 Giza Egypt
This study developed potentiometric sensors for detecting lurasidone HCl (LSH), a vital drug for treating schizophrenia and bipolar I disorder, in pharmaceutical formulations and biological samples. The sensors are based on screen-printed electrodes (SPE) modified with a molecularly imprinted polymer (MIP) synthesized using lurasidone as a template, 1-vinyl-2-pyrrolidine (VP) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinker, and benzoyl peroxide as an initiator. The SPE was further modified with a conductive polyaniline (PANI) film and a polyvinyl chloride (PVC) layer containing MIP as an ionophore and multiwalled carbon nanotubes (MWCNT) as a transducing material along with 2-nitrophenyl octyl ether (2-NPOE) as plasticizer.
View Article and Find Full Text PDFJ Prosthodont
December 2024
Advanced Graduate Prosthodontics, Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts, USA.
Purpose: Optical tracking devices (OTDs) hold promise for enhancing patient-centered prostheses, but their efficacy remains underexplored. This clinical study aimed to comprehensively evaluate differences in static and dynamic occlusions among occlusal appliances fabricated using optical tracking, conventional tracking, and average articulator values (AAVs), providing insights into their efficacy in clinical and research-based practices.
Materials And Methods: Twelve dentate participants aged over 25 years, with Angle Class I and II occlusal relationships, were enrolled.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!