Vaccine efficacy and its quantification is a crucial concept for the proper design of public health vaccination policies. In this work we proposed a mathematical model to estimate the efficacy of the influenza vaccine in a real-word scenario. In particular, our model is a SEIR-type epidemiological model, which distinguishes vaccinated and unvaccinated populations. Mathematically, its dynamics is governed by a nonlinear system of ordinary differential equations, where the non-linearity arises from the effective contacts between susceptible and infected individuals. Two key aspects of this study is that we use a vaccine distribution over time that is based on real data specific to the elderly people in the Valencian Community and the calibration process takes into account that over one influenza season a specific proportion of the population becomes infected with influenza. To consider the effectiveness of the vaccine, the model incorporates a parameter, the vaccine attenuation factor, which is related with the vaccine efficacy against the influenza virus. With this framework, in order to calibrate the model parameters and to obtain an influenza vaccine efficacy estimation, we considered the 2016-2017 influenza season in the Valencian Community, Spain, using the influenza reported cases of vaccinated and unvaccinated. In order to ensure the model identifiability, we choose to deterministically calibrate the parameters for different scenarios and we find the one with the minimum error in order to determine the vaccine efficacy. The calibration results suggest that the influenza vaccine developed for 2016-2017 influenza season has an efficacy of approximately 76.7%, and that the risk of becoming infected is five times higher for an unvaccinated individual in comparison with a vaccinated one. This estimation partially agrees with some previous studies related to the influenza vaccine. This study presents a new integrated mathematical approach to study the influenza vaccine efficacy and gives further insight into this important public health topic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058883PMC
http://dx.doi.org/10.1016/j.idm.2024.04.006DOI Listing

Publication Analysis

Top Keywords

influenza vaccine
24
vaccine efficacy
24
influenza
12
vaccine
12
valencian community
12
influenza season
12
efficacy
8
community spain
8
public health
8
efficacy influenza
8

Similar Publications

Cost-Effectiveness Analysis of Vaccination Compliance Strategies Using a Novel Hybrid Model for Influenza Vaccination.

China CDC Wkly

December 2024

Department of Biostatistics, School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing City, Jiangsu Province, China.

Introduction: The cost-effectiveness of vaccination strategies plays a crucial role in managing infectious diseases such as influenza within public health systems. This study evaluated the cost-effectiveness of vaccination compliance strategies by comparing an "adherence" strategy, which promoted continuous vaccination uptake, with a "volunteer" strategy through model-based simulations.

Methods: We developed a novel hybrid model that integrates continuous-time agent-based models (ABMs) with a Markov model to simulate vaccination behaviors and disease dynamics at the individual level.

View Article and Find Full Text PDF

Clinical advancements in mRNA vaccines against viral infections.

Clin Immunol

December 2024

Department of Microbiology, Gachon University College of Medicine, Incheon, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea; Korea mRNA Vaccine Initiative, Gachon University, Seongnam, Republic of Korea. Electronic address:

Over the last decade, mRNA vaccines development has shown significant advancement, particularly during the COVID-19 pandemic. This comprehensive review examines the efficacy of pivotal vaccines against emerging COVID-19 variants and strategies for enhancing vaccine effectiveness. It also explores the versatility of mRNA technology in addressing other infectious diseases such as influenza, respiratory syncytial virus, HIV, cytomegalovirus, Ebola, Zika, Rabies, and Nipah viruses.

View Article and Find Full Text PDF

Re: 'The relative effectiveness of a high-dose quadrivalent influenza vaccine versus standard-dose quadrivalent influenza vaccines in older adults in France' by Bricout et al.

Clin Microbiol Infect

December 2024

Scientific Committee of the Foundation 'Allineare Sanità e Salute' Milan, Via Ricordi, 4 - 20131 Milano - Italy. Electronic address:

View Article and Find Full Text PDF

Enhancing antibody levels and T cell activity of quadrivalent influenza vaccine by combining it with CpG HP021.

Sci Rep

December 2024

State Key Laboratory for Diagnosis, Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.

Influenza virus infections are a serious danger to people's health worldwide as they are responsible for seasonal flu outbreaks. There is an urgent need to improve the effectiveness and durability longevity of the immune response to influenza vaccines. We synthesized the CpG HP021 and examined the impact of it on the immune response to an influenza vaccine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!