The exposure of the world's mountains to global change drivers.

iScience

Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, viale dell'Università 32, I-00185 Rome, Italy.

Published: May 2024

Global change affects mountain areas at different levels, with some mountains being more exposed to change in climate or environmental conditions and others acting as local refugia. We quantified the exposure of the world's mountains to three drivers of change, climate, land use, and human population density, using two spatial-temporal metrics (velocity and magnitude of change). We estimated the acceleration of change for these drivers by comparing past (1975-2005) vs. future (2020-2050) exposure, and we also compared exposure in lowlands vs. mountains. We found Africa's tropical mountains facing the highest future exposure to multiple drivers of change, thus requiring targeted adaptation and mitigation strategies to preserve biodiversity. European and North America's mountains, in contrast, experience more limited exposure to global change and could act as local refugia for biodiversity. This knowledge can be used to prioritize local-scale interventions and planning long-term monitoring to reduce the risks faced by mountain biodiversity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11059124PMC
http://dx.doi.org/10.1016/j.isci.2024.109734DOI Listing

Publication Analysis

Top Keywords

global change
12
exposure world's
8
world's mountains
8
change
8
change drivers
8
change climate
8
local refugia
8
drivers change
8
exposure
6
mountains
6

Similar Publications

The intelligent identification of wear particles in ferrography is a critical bottleneck that hampers the development and widespread adoption of ferrography technology. To address challenges such as false detection, missed detection of small wear particles, difficulty in distinguishing overlapping and similar abrasions, and handling complex image backgrounds, this paper proposes an algorithm called TCBGY-Net for detecting wear particles in ferrography images. The proposed TCBGY-Net uses YOLOv5s as the backbone network, which is enhanced with several advanced modules to improve detection performance.

View Article and Find Full Text PDF

Global changes in extreme tropical cyclone wave heights under projected future climate conditions.

Sci Rep

December 2024

Weather Program Office, Ocean and Atmospheric Research, NOAA, Silver Spring, MD, USA.

Tropical cyclone risks are expected to increase with climate change. One such risk is extreme ocean waves generated by surface winds from these systems. We use synthetic databases of both historical (1980-2017) and future (2015-2050) tropical cyclone tracks to generate wind fields and force a computationally efficient wave model to estimate significant wave heights across all global tropical cyclone basins.

View Article and Find Full Text PDF

Methamphetamine use disorder has emerged as a significant public health concern globally. This study endeavors to elucidate the alterations in expression changes of miRNAs in the plasma of methamphetamine use disorder and elucidate the alterations in miRNA expression in the plasma of individuals with methamphetamine use disorder and investigate the relationship between these differentially expressed miRNAs and the disorder itself, cravings for methamphetamine, and associated mental disorders. Furthermore, the study seeks to clarify the expression of downstream target molecules of specific miRNAs in the plasma of methamphetamine use disorder, assess the diagnostic utility of these miRNAs and their target molecules, explore their potential as biomarkers, and identify potential targets for the diagnosis and treatment of methamphetamine use disorder.

View Article and Find Full Text PDF

Global emissions of polychlorinated naphthalenes from 1912 to 2050.

Nat Commun

December 2024

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.

Polychlorinated naphthalenes (PCNs) are persistent organic compounds that are regulated by the Stockholm Convention. Here, we estimate historical emissions from PCN production and use (1912-1987) and unintentional emissions from 20 categories (2000-2020). A random forest regression model projects emissions for 2020-2050.

View Article and Find Full Text PDF

Recent methane surges reveal heightened emissions from tropical inundated areas.

Nat Commun

December 2024

Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.

Record breaking atmospheric methane growth rates were observed in 2020 and 2021 (15.2±0.5 and 17.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!