PGRN is involved in macrophage M2 polarization regulation through TNFR2 in periodontitis.

J Transl Med

Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, 250012, China.

Published: April 2024

Background And Objective: Progranulin (PGRN), a multifunctional growth factor, plays indispensable roles in the regulation of cancer, inflammation, metabolic diseases, and neurodegenerative diseases. Nevertheless, its immune regulatory role in periodontitis is insufficiently understood. This study attempts to explore the regulatory effects of PGRN on macrophage polarization in periodontitis microenvironment.

Methods: Immunohistochemical (IHC) and multiplex immunohistochemical (mIHC) stainings were performed to evaluate the expression of macrophage-related markers and PGRN in gingival samples from periodontally healthy subjects and periodontitis subjects. RAW264.7 cells and bone marrow-derived macrophages (BMDMs) were polarized towards M1 or M2 macrophages by the addition of LPS or IL-4, respectively, and were treated with or without PGRN. Real-time fluorescence quantitative PCR (qRT-PCR), immunofluorescence staining (IF), enzyme-linked immunosorbent assay (ELISA), and flow cytometry were used to determine the expressions of M1 and M2 macrophage-related markers. Co-immunoprecipitation was performed to detect the interaction between PGRN and tumor necrosis factor receptor 2 (TNFR2). Neutralizing antibody was used to block TNFR2 to confirm the role of TNFR2 in PGRN-mediated macrophage polarization.

Results: The IHC and mIHC staining of human gingival slices showed a significant accumulation of macrophages in the microenvironment of periodontitis, with increased expressions of both M1 and M2 macrophage markers. Meanwhile, PGRN was widely expressed in the gingival tissue of periodontitis and co-expressed mainly with M2 macrophages. In vitro experiments showed that in RAW264.7 cells and BMDMs, M1 markers (CD86, TNF-α, iNOS, and IL-6) substantially decreased and M2 markers (CD206, IL-10, and Arg-1) significantly increased when PGRN was applied to LPS-stimulated macrophages relatively to LPS stimulation alone. Besides, PGRN synergistically promoted IL-4-induced M2 markers expression, such as CD206, IL-10, and Arg1. In addition, the co-immunoprecipitation result showed the direct interaction of PGRN with TNFR2. mIHC staining further revealed the co-localization of PGRN and TNFR2 on M2 macrophages (CD206+). Blocking TNFR2 inhibited the regulation role of PGRN on macrophage M2 polarization.

Conclusions: In summary, PGRN promotes macrophage M2 polarization through binding to TNFR2 in both pro- and anti-inflammatory periodontal microenvironments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11061905PMC
http://dx.doi.org/10.1186/s12967-024-05214-7DOI Listing

Publication Analysis

Top Keywords

pgrn
13
macrophage polarization
12
tnfr2
8
pgrn macrophage
8
macrophage-related markers
8
markers pgrn
8
raw2647 cells
8
interaction pgrn
8
mihc staining
8
cd206 il-10
8

Similar Publications

Background: Progranulin () plays a critical role in familial frontotemporal dementia (fFTD), where haploinsufficiency leads to reduction in PGRN levels in the brain, resulting in degeneration of neurons in the frontal lobe of brain responsible for personality, language, and behavior. FTD is the most common dementia in people under 60. Sortilin (), expressed by neurons, endocytoses, and delivers PGRN rapidly to lysosomes for degradation.

View Article and Find Full Text PDF

Background: Progranulin (PGRN), a glycoprotein secreted by microglia and neurons, regulates lysosomal function, neuroinflammation, and has neurotrophic effects. Variants in the granulin gene () that cause a reduction of PGRN in plasma and cerebrospinal fluid (CSF) are associated with an increased risk of Alzheimer’s disease (AD). The sortilin receptor (SORT1) on neurons and microglia regulates PGRN degradation.

View Article and Find Full Text PDF

Introduction: Genetic variation in the lysosomal and transmembrane protein 106B (TMEM106B) modifies risk for several neurodegenerative disorders, especially frontotemporal lobar degeneration (FTLD). The C-terminal (CT) domain of TMEM106B occurs as fibrillar protein deposits in the brains of dementia patients.

Methods: To determine the TMEM CT aggregation propensity and neurodegenerative potential, we generated transgenic Caenorhabditis elegans expressing the human TMEM CT fragment aggregating in FTLD cases.

View Article and Find Full Text PDF

Maternal organokines throughout pregnancy as predictors of neonatal anthropometric characteristics and adiposity.

Front Endocrinol (Lausanne)

December 2024

Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico.

Aims: To evaluate the relation between maternal concentrations of progranulin (PGRN), adipocyte fatty acid-binding protein (AFABP), brain-derived neurotrophic factor (BDNF), and fibroblast growth factor 21 (FGF21) throughout pregnancy with neonatal weight and length at birth and at one month of age, as well as with the percentage of fat mass at one month of age. Besides, we evaluated the association between maternal organokine concentrations with pregestational nutritional status and gestational weight gain (GWG).

Methods: Longitudinal study of 100 healthy pregnant women and their neonates.

View Article and Find Full Text PDF

PGRN protects against serum deprivation-induced cell death by promoting the ROS scavenger system in cervical cancer.

Cell Death Dis

December 2024

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.

Progranulin (PGRN), an autocrine growth factor with tumorigenic roles in a variety of tumors, is a putative survival factor for normal and cancer cells in vitro. However, the fundamental mechanism of PGRN-mediated survival of cancer cells suffering from various types of microenvironmental stresses, such as serum deprivation, remains unknown. We show here that serum deprivation decreases intracellular PGRN protein levels in cervical cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!