A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Measures of angularity in digital images. | LitMetric

Measures of angularity in digital images.

Behav Res Methods

Department of Psychology, Brandon University, 270 - 18th St, Brandon, MB, R7A 6A9, Canada.

Published: October 2024

AI Article Synopsis

  • The paper explores digital image processing techniques to differentiate between angular and curvilinear images using MATLAB scripts.
  • Three studies analyze simple polygons, artistic drawings, and real-world objects to evaluate five metrics derived from these techniques.
  • Logistic regression shows that most metrics can effectively distinguish between angular and curvilinear images, though their effectiveness varies based on the image characteristics.

Article Abstract

In light of the growing interest in studying the affective and aesthetic attributes of curvature, the present paper describes four digital image processing techniques that can be used to objectively discriminate between angular and curvilinear stimuli. MATLAB scripts for each of the techniques accompany the paper. Three studies are then reported that evaluate the efficacy of five metrics, derived from the four techniques, at quantifying the degree of angularity depicted in an image. Images of simple polygons (Study 1), artistic drawings of everyday objects (Study 2), and real-world objects, typefaces, and abstract patterns (Study 3) were analyzed. Logistic regression models were used to determine the relative importance of the metrics at distinguishing between angular and curvilinear items. With one exception, all of the metrics were capable of distinguishing between angular and curvilinear items at a level above chance, but some metrics were better at doing so than others, and their discriminative capacity was influenced by the characteristics of the image. The strengths and limitations of the metrics are discussed, as well as some practical recommendations.

Download full-text PDF

Source
http://dx.doi.org/10.3758/s13428-024-02412-5DOI Listing

Publication Analysis

Top Keywords

angular curvilinear
12
distinguishing angular
8
curvilinear items
8
metrics
5
measures angularity
4
angularity digital
4
digital images
4
images light
4
light growing
4
growing interest
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!