Autoreactive CD8 T cells play a key role in type 1 diabetes (T1D), but the antigen spectrum that activates autoreactive CD8 T cells remains unclear. Endoplasmic reticulum stress (ERS) has been implicated in β-cell autoantigen generation. Here, we analyzed the major histocompatibility complex class I (MHC-I)-associated immunopeptidome (MIP) of islet β-cells under steady and ERS conditions and found that ERS reshaped the MIP of β-cells and promoted the MHC-I presentation of a panel of conventional self-peptides. Among them, OTUB2 showed immunodominance, and the corresponding autoreactive CD8 T cells were diabetogenic in nonobese diabetic (NOD) mice. High glucose intake upregulated pancreatic OTUB2 expression and amplified the OTUB2-specific CD8 T-cell response in NOD mice. Repeated OTUB2 administration significantly reduced the incidence of T1D in NOD mice. Interestingly, peripheral blood mononuclear cells (PBMCs) from patients with T1D, but not from healthy controls, showed a positive IFN-γ response to human OTUB2 peptides. This study provides not only a new explanation for the role of ERS in promoting β-cell-targeted autoimmunity but also a potential target for the prevention and treatment of T1D. The data are available via ProteomeXchange with the identifier PXD041227.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143349PMC
http://dx.doi.org/10.1038/s41423-024-01150-0DOI Listing

Publication Analysis

Top Keywords

autoreactive cd8
12
cd8 cells
12
nod mice
12
t1d
5
immunopeptidome mining
4
mining reveals
4
reveals novel
4
novel ers-induced
4
ers-induced target
4
target t1d
4

Similar Publications

Background: Chronic graft-versus-host disease (cGVHD) manifests with characteristics of autoimmune disease with organs attacked by pathogenic helper T cells. Recent studies have highlighted the role of T cells in cGVHD pathogenesis. Due to limited understanding of underlying mechanisms, preventing cGVHD after allogenic hematopoietic cell transplantation (HCT) has become a major challenge.

View Article and Find Full Text PDF

Type 1 Diabetes Mellitus (T1D) is an autoimmune disease caused by unremitting immune attack on pancreas insulin-producing beta cells. Persistence of the autoimmune response is mediated by TCF1+ Ly108+ progenitor CD8+ T (T) cells, a stem-like population that gives rise to exhausted effectors with limited cytolytic function in chronic virus infection and cancer. What paradoxically drives T conversion to highly cytolytic effectors in T1D, however, remains unclear.

View Article and Find Full Text PDF

Background: Type 1 diabetes (T1D) results in autoreactive T cells chronically destroying pancreatic islets. This often results in irreplaceable loss of insulin-producing beta cells. To reverse course, a combinatorial strategy of employing glucose-responsive insulin restoration coupled with inhibiting autoreactive immune responses is required.

View Article and Find Full Text PDF

Thymic and T-cell intrinsic critical roles associated with Severe Combined Immunodeficiency and Omenn syndrome due to a heterozygous variant (G201R) in PSMB10.

J Allergy Clin Immunol

December 2024

Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. Electronic address:

Background: Heterozygous immunoproteasome subunit beta-type 10 (PSMB10) mutations can cause severe combined immunodeficiency (SCID) and Omenn syndrome (OS). Hematopoietic stem cell transplantation in these patients is associated with severe complications and poor immune reconstitution, often resulting in death.

Objective: To perform immunological and molecular characterization of an infant with a PSMB10 heterozygous variant.

View Article and Find Full Text PDF

Aims/hypothesis: Immunotherapeutics targeting T cells are crucial for inhibiting autoimmune disease progression proximal to disease onset in type 1 diabetes. There is an outstanding need to augment the durability and effectiveness of T cell targeting therapies by directly restraining proinflammatory T cell subsets, while simultaneously augmenting regulatory T cell (Treg) activity. Here, we present a novel strategy for preventing diabetes incidence in the NOD mouse model using a blocking monoclonal antibody targeting the type 1 diabetes risk-associated T cell co-stimulatory receptor, CD226.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!