The Oscillatory Behaviour of Cu-ZSM-5 Catalysts for NO Decomposition: Investigation of Cu Species by Complementary Techniques.

Chemphyschem

Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy.

Published: August 2024

Copper-exchanged ZSM-5 (Cu-ZSM-5) is a promising catalyst thanks to the Cu redox pair. A particular feature of this material consists in the presence of spontaneous isothermal oscillations which take place during NO decomposition reaction, depending on the operating conditions. In the present work, a set of five Cu-ZSM-5 catalysts was synthesised by three procedures and three different copper precursor concentrations: i) wet impregnation, ii) single ion exchange, and iii) double ion exchange. Catalytic tests revealed that the ion-exchanged samples exhibit a low catalytic activity and no oscillatory behaviour, except for the twice-exchanged sample which achieves an average NO conversion of 26 % at 400 °C. Conversely, the impregnated samples reach higher levels of NO conversion (66 % for CuZSM5_WI and 72 % for CuZSM5_WI) and demonstrate a similar oscillating pattern. Further investigations disclosed that the most active catalysts, characterised by the presence of oscillatory behaviour, have more abundant and easily reducible copper species (ICP, EDX and H-TPR) which interact better with the zeolitic support (FT-IR). Catalytic tests under a long time on stream (TOS) suggest that either self-organised patterns or deterministic chaos can be achieved during the reaction, depending on the operating conditions, such as temperature and contact time.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.202400339DOI Listing

Publication Analysis

Top Keywords

oscillatory behaviour
12
cu-zsm-5 catalysts
8
reaction depending
8
depending operating
8
operating conditions
8
ion exchange
8
catalytic tests
8
behaviour cu-zsm-5
4
catalysts decomposition
4
decomposition investigation
4

Similar Publications

Recently acquired memories are reactivated in the hippocampus during sleep, an initial step for their consolidation. This process is concomitant with the hippocampal reactivation of previous memories, posing the problem of how to prevent interference between older and recent, initially labile, memory traces. Theoretical work has suggested that consolidating multiple memories while minimizing interference can be achieved by randomly interleaving their reactivation.

View Article and Find Full Text PDF

Polymers are promising as stabilizers for developing eco-friendly foam extinguishing agents to solve the imminent pollution problem of fluorinated ones. Present work aims to elucidate the mechanisms by which polymers influence the performance of non-fluorinated foams. Specifically, it investigates the effects of three polymers-xanthan gum (XG), sodium carboxymethyl cellulose (CMCNa), and gelatin (GEL) on surface tension, conductivity, viscosity, foamability, foam stability, and rheology of the siloxane-based Gemini/sodium alpha-alkenyl sulfonate mixture.

View Article and Find Full Text PDF

About the ozone ability in using adaptive chaos to restore a healthy state in the oxygen-ozone adjunct therapy.

Int Immunopharmacol

December 2024

Italian Scientific Society of Oxygen-Ozone Therapy (SIOOT) and High Master School of Oxygen-Ozone Therapy, University of Pavia, Italy.

The action of ozone in medicine is a subject of interest and lively, controversial debates. Its mechanisms of action are still far from fully understood. However, it is possible that ozone triggers a series of dynamics in living organisms related to chaos, multi-stable phenomena, and oscillatory processes.

View Article and Find Full Text PDF

Photochemically triggered, transient, and temporally oscillatory-modulated transcription machineries are introduced. The resulting dynamic transcription circuits are implemented to guide photochemically triggered, transient, and oscillatory modulation of thrombin toward temporal control over fibrinogenesis. One system describes the assembly of a reaction module leading to the photochemically triggered formation of an active transcription machinery that, in the presence of RNase H, guides the transient activation of thrombin toward fibrinogenesis.

View Article and Find Full Text PDF

Effects of anatomy and head motion on spatial patterns of deformation in the human brain.

Ann Biomed Eng

December 2024

Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, 1 Brookings Drive, MSC 1185-208-125, St. Louis, MO, 63130, USA.

Purpose: To determine how the biomechanical vulnerability of the human brain is affected by features of individual anatomy and loading.

Methods: To identify the features that contribute most to brain vulnerability, we imparted mild harmonic acceleration to the head and measured the resulting brain motion and deformation using magnetic resonance elastography (MRE). Oscillatory motion was imparted to the heads of adult participants using a lateral actuator (n = 24) or occipital actuator (n = 24) at 20 Hz, 30 Hz, and 50 Hz.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!