Despite the clinical success of tricalcium silicate (TCS)-based materials in endodontics, the inferior handling characteristic, poor anti-washout property and slow setting kinetics hindered their wider applications. To solve these problems, an injectable fast-setting TCS/β-tricalcium phosphate/monocalcium phosphate anhydrous (β-TCP/MCPA) cement was developed for the first time by incorporation of hydroxypropyl methylcellulose (HPMC) and β-TCP/MCPA. The physical-chemical characterization (setting time, anti-washout property, injectability, compressive strength, apatite mineralization and sealing property) of TCS/(β-TCP/MCPA) were conducted. Its hydration mechanism was also investigated. Furthermore, the cytocompatibility and osteogenic/odontogenic differentiation of stem cells isolated from human exfoliated deciduous teeth (SHED) treated with TCS/β-TCP/MCPA were studied. The results showed that HPMC could provide TCS with good anti-washout ability and injectability but slow hydration process. However, β-TCP/MCPA effectively enhanced anti-washout characteristics and reduced setting time due to faster hydration kinetics. TCS/(β-TCP/MCPA) obtained around 90 % of injection rate and high compressive strength whereas excessive additions of β-TCP/MCPA compromised its injectability and compressive strength. TCS/(β-TCP/MCPA) can induce apatite deposition and form a tight marginal sealing at the dentin-cement interface. Additionally, TCS/(β-TCP/MCPA) showed good biocompatibility and promoted osteo/odontogenic differentiation of SHED. In general, our results indicated that TCS/(β-TCP/MCPA) may be particularly promising as an injectable bioactive cements for endodontic treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.131580 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!