RNase P is an essential enzyme found across all domains of life that is responsible for the 5'-end maturation of precursor tRNAs. For decades, numerous studies have sought to elucidate the mechanisms and biochemistry governing RNase P function. However, much remains unknown about the regulation of RNase P expression, the turnover and degradation of the enzyme, and the mechanisms underlying the phenotypes and complementation of specific RNase P mutations, especially in the model bacterium, In , the temperature-sensitive (ts) mutation in the protein subunit of RNase P has arguably been one of the most well-studied mutations for examining the enzyme's activity in vivo. Here, we report for the first time naturally occurring temperature-resistant suppressor mutations of strains carrying the allele. We find that strains can partially compensate the ts defect via gene amplifications of either RNase P subunit ( or ) or by the acquisition of loss-of-function mutations in Lon protease or RNase R. Our results agree with previous plasmid overexpression and gene deletion complementation studies, and importantly suggest the involvement of Lon protease in the degradation and/or regulatory pathway(s) of the mutant protein subunit of RNase P. This work offers novel insights into the behavior and complementation of the allele in vivo and provides direction for follow-up studies regarding RNase P regulation and turnover in .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251521 | PMC |
http://dx.doi.org/10.1261/rna.079909.123 | DOI Listing |
Alzheimers Dement
December 2024
Johns Hopkins University, Saint Petersburg, FL, USA.
Background: Argonaute2 (Ago2) plays an essential role in RISC-mediated silencing of target mRNAs, which are critical for cellular functions. Argonaute2 Syndrome, also known as Ago2 Syndrome, is a rare neurological disorder recently discovered in humans. It has significant implications for brain development, yet it remains unstudied to date METHOD: To study this effect, we deleted the Ago2 gene in GABAergic (Slc32a1 cre) and Glutamatergic (Slc17a6 cre) mice.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Emory University School of Medicine, Atlanta, GA, USA.
Background: Circular RNAs (circRNAs) play multifaceted roles to precisely control expression of broad gene networks. These highly stable molecules are often accumulated in the mammalian brain and thought to serve as "memory molecules" that govern the long process of aging. Mounting evidence demonstrated circRNA dysregulation in the postmortem brains of Alzheimer's disease (AD).
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan road II, Guangzhou, 510080, People's Republic of China.
Background: Clear cell renal cell carcinoma (ccRCC) represents the most prevalent subtype, accounting for nearly 80% of all RCC cases. Recent research has shown that high expression of circular non-coding RNA (circRNA) is associated with poor prognosis in patients with renal clear cell carcinoma (ccRCC), however, the underlying mechanism remains unclear.
Methods: After analysing self-sequenced renal cancer and paracancer circRNA sequencing data and comparing it with the GEO public database, we discovered that circASAP1 expression was significantly up-regulated in renal cancers.
Cancer Gene Ther
January 2025
Reproductive Medical Center/Hubei Medical Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Renmin Hospital of Wuhan University, Wuhan, China.
Cervical cancer (CC) is a prevalent gynecological malignancy. Increasing evidence suggests that circular RNAs (circRNAs) play a pivotal role in the pathogenesis of CC. However, the regulatory function of circ_ASH1L in CC remains elusive.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!