Synergistic and antibiofilm activity of DNase I and glucose oxidase loaded chitosan nanoparticles against dual-species biofilms of Listeria monocytogenes and Salmonella.

Int J Biol Macromol

College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China; Shandong Technology Innovation Center of Special Food, Qingdao, China; Qingdao Special Food Research Institute, Qingdao, China. Electronic address:

Published: June 2024

Salmonella and Listeria monocytogenes are two of the most common foodborne pathogens in the food industry. They form dual-species biofilms, which have a higher sensitivity to antimicrobial treatment and a greater microbial adhesion. In this experiment, we loaded DNase I and glucose oxidase (GOX) on chitosan nanoparticles (CSNPs) to explore their inhibitory effects on and disruption of dual-species biofilms of Salmonella enterica and L. monocytogenes. Transmission electron microscopy (TEM) showed that CSNP-DNase-GOX and CSNPs were spherical in shape. CSNP-DNase-GOX was shifted and altered compared to the infrared peaks of CSNPs. CSNPs loaded with DNase I and GOX showed an increase in the particle size and an alteration in the polydispersity index (PDI) and the zeta potential. Compared to free DNase I or GOX, DNase I and GOX loaded on CSNPs had higher stability at different temperatures. CSNP-DNase-GOX was more effective in inhibiting dual-species biofilms than CSNP-GOX. Scanning electron microscopy (SEM) and fluorescence microscopy were used to observe the structure of the biofilm, which further illustrated that CSNP-DNase-GOX disrupted the dual-species biofilms of S. enterica and L. monocytogenes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.131943DOI Listing

Publication Analysis

Top Keywords

dual-species biofilms
20
dnase gox
12
dnase glucose
8
glucose oxidase
8
chitosan nanoparticles
8
listeria monocytogenes
8
loaded dnase
8
enterica monocytogenes
8
electron microscopy
8
dnase
5

Similar Publications

Background/objectives: Biofilm-associated infections, particularly those involving Candida auris and Staphylococcus aureus, pose significant challenges in clinical settings due to their resilience and resistance to conventional treatments. This study aimed to synthesize novel triazole derivatives containing a piperazine ring via click chemistry and evaluate their efficacy in disrupting biofilms formed by these pathogens.

Methods: Triazole derivatives were synthesized using click chemistry techniques.

View Article and Find Full Text PDF

Facultatively anaerobic spp. and anaerobic spp. are among the most prominent bacteria on human skin.

View Article and Find Full Text PDF

Polymicrobial biofilm infections, especially associated with medical devices such as peripheral venous catheters, are challenging in clinical settings for treatment and management. In this study, we examined the mixed biofilm formed by Candida glabrata and Klebsiella pneumoniae, which were co-isolated from the same peripheral venous catheter. Our results revealed that C.

View Article and Find Full Text PDF

The appropriate nutrient conditions for methicillin-resistant Staphylococcus aureus and Candida albicans dual-species biofilm formation in vitro.

Sci Rep

January 2025

Department of Biological and Medical Sciences, Charles University, Faculty of Pharmacy in Hradec Králové, 2089, Zborovská, Hradec Králové, 500 03, Czech Republic.

Polymicrobial biofilms, the reason for most chronic wound infections, play a significant role in increasing antibiotic resistance. The in vivo effectiveness of the new anti-biofilm therapy is conditioned by the profound evaluation using appropriate in vitro biofilm models. Since nutrient availability is crucial for in vitro biofilm formation, this study is focused on the impact of four selected cultivation media on the properties of methicillin-resistant Staphylococcus aureus and Candida albicans dual-species biofilms.

View Article and Find Full Text PDF

Early childhood caries (ECC), a severe form of dental caries, is exacerbated by the synergistic interaction between Streptococcus mutans and Candida albicans, leading to greater disease severity than their individual effects. This underscores the need for more targeted and potent therapeutic alternatives. Given the promising anti-infective properties of quaternary ammonium surfactants (QAS), this study explores the microbicidal properties of one such QAS, cetyltrimethylammonium chloride (CTAC), against both individual- and dual-species cultures of S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!