Chimeric antigen receptor (CAR) T cell therapy is hindered in solid tumor treatment due to the immunosuppressive tumor microenvironment and suboptimal T cell persistence. Current strategies do not address nutrient competition in the microenvironment. Hence, we present a metabolic refueling approach using inosine as an alternative fuel. CAR T cells were engineered to express membrane-bound CD26 and cytoplasmic adenosine deaminase 1 (ADA1), converting adenosine to inosine. Autocrine secretion of ADA1 upon CD3/CD26 stimulation activates CAR T cells, improving migration and resistance to transforming growth factor β1 suppression. Fusion of ADA1 with anti-CD3 scFv further boosts inosine production and minimizes tumor cell feeding. In mouse models of hepatocellular carcinoma and non-small cell lung cancer, metabolically refueled CAR T cells exhibit superior tumor reduction compared to unmodified CAR T cells. Overall, our study highlights the potential of selective inosine refueling to enhance CAR T therapy efficacy against solid tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11148642 | PMC |
http://dx.doi.org/10.1016/j.xcrm.2024.101530 | DOI Listing |
Wiley Interdiscip Rev Nanomed Nanobiotechnol
November 2024
Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.
Messenger ribonucleic acid (mRNA) therapeutics are attracting attention as promising tools in cancer immunotherapy due to their ability to leverage the in vivo expression of all known protein sequences. Even small amounts of mRNA can have a powerful effect on cancer vaccines by promoting the synthesis of tumor-specific antigens (TSA) or tumor-associated antigens (TAA) by antigen-presenting cells (APC). These antigens are then presented to T cells, eliciting strong antitumor immune stimulation.
View Article and Find Full Text PDFExpert Opin Biol Ther
December 2024
Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
Introduction: Immune checkpoint inhibitors (ICIs) have revolutionized the field of cancer immunotherapy and have enhanced the survival of patients with malignant tumors. However, the overall efficacy of ICIs remains unsatisfactory and is faced with two major concerns of resistance development and occurrence of immune-related adverse events (irAEs). Bispecific antibodies (bsAbs) have emerged as promising strategies with unique mechanisms of action to achieve a better efficacy and safety than monoclonal antibodies (mAbs) or even their combination.
View Article and Find Full Text PDFCommun Biol
October 2024
RocRock Biotechnology Co. Ltd, Suzhou, China.
Mol Ther Oncol
December 2024
Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.
Mol Ther
November 2024
Cellectis Inc, New York, NY 10016, USA. Electronic address:
Adoptive cell therapy using chimeric antigen receptor (CAR) T cells has proven to be lifesaving for many cancer patients. However, its therapeutic efficacy has been limited in solid tumors. One key factor for this is cancer-associated fibroblasts (CAFs) that modulate the tumor microenvironment (TME) to inhibit T cell infiltration and induce "T cell dysfunction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!