According to the hygiene and biodiversity hypotheses, frequent exposure to environmental microbiota, especially through soil contact, diversifies commensal microbiota, enhances immune modulation, and ultimately lowers the risk of immune-mediated diseases. Here we test the underlying assumption of the hygiene and biodiversity hypotheses by instructing volunteers to grow edible plants indoors during the winter season when natural exposure to environmental microbiota is low. The one-month randomized, placebo-controlled double-blind trial consisted of two treatments: participants received either microbially diverse growing medium or visually similar but microbially poor growing medium. Skin microbiota and a panel of seven immune markers were analyzed in the beginning of the trial and after one month. The diversity of five bacterial phyla (Bacteroidetes, Planctomycetes, Proteobacteria, Cyanobacteria, and Verrucomicrobia) and one class (Bacteroidia) increased on the skin of participants in the intervention group while no changes were observed in the placebo group. The number of nodes and edges in the co-occurrence networks of the skin bacteria increased on average three times more in the intervention group than in the placebo group. The plasma levels of the immunomodulatory cytokine interleukin 10 (IL-10) increased in the intervention group when compared with the placebo group. A similar trend was observed in the interleukin 17A (IL-17A) levels and in the IL-10:IL-17A ratios. Participants in both groups reported high satisfaction and adherence to the trial. The current study provides evidence in support of the core assumption of the hygiene and biodiversity hypotheses of immune-mediated diseases. Indoor urban gardening offers a meaningful and convenient approach for increasing year-round exposure to environmental microbiota, paving the way for other prophylactic practices that might help prevent immune-mediated diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2024.108705 | DOI Listing |
Nutrients
January 2025
Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
A fucoidan oligosaccharide (FOS), a potent compound derived from algae, is known for its diverse biological activities, including prebiotic activity, anticancer activity, and antioxidative properties, and has demonstrated supportive therapeutic effects in treating kidney ailments. This study was conducted to explore the protective influence of FOS on kidney damage due to aging induced by D-galactose in Sprague Dawley (SD) rats. The low-dose FOS group was administered FOS (100 mg/kg) by gavage, and the high-FOS group received FOS (200 mg/kg) by gavage.
View Article and Find Full Text PDFPathogens
January 2025
Laboratory of Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Rio de Janeiro 21040-360, RJ, Brazil.
Parasitic infections in non-human primates (NHPs) kept ex situ can be caused by zoonotic protists like and . In Brazil, little is known about these infections in neotropical species. This study aimed to identify Amoebozoa and Ciliophora groups in fecal samples through in vitro isolation and molecular analysis, mapping their distribution in Brazil.
View Article and Find Full Text PDFFoods
January 2025
Department of Hygiene and Medical Ecology, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
(1) Background: A sustainable healthy diet assures human well-being in all life stages, protects environmental resources, and preserves biodiversity. This work investigates the sociodemographic factors, knowledge, trust, and motivations involved in organic food acquisition behavior. (2) Methods: An online survey via Google Forms platform, with 316 respondents, was conducted from 1 March to 31 May 2024.
View Article and Find Full Text PDFFood Res Int
February 2025
Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, 1838. Guangzhou Avenue North, Guangzhou 510515, Guangdong, PR China. Electronic address:
Xylooligosaccharides (XOS) ameliorate insulin resistance (IR) in gestational diabetes mellitus (GDM) probably by propagating Akkermansia muciniphila (Akk). This study aimed to investigate the effects and mechanisms of XOS, Akk and combination on IR in GDM mice/pseudo-germ-free (PGF) mice. Female mice were fed with AIN-93 (n = 19) and high fat diet (HFD) (n = 206).
View Article and Find Full Text PDFMycopathologia
January 2025
Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, People's Republic of China.
Background: Interdigital tinea pedis is a common type of tinea pedis that occurs between toes and is easy to recur. Recently, the skin microbiome analysis of interdigital tinea pedis showed changes in bacterial microbiome in addition to fungal infection.
Objectives: To investigate the efficacy and safety of clioquinol 3% cream in treating interdigital tinea pedis as well as characterize changes in the skin microbiome during treatment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!