Pairing droplet microfluidics and CRISPR/Cas12a techniques creates a powerful solution for the detection and quantification of nucleic acids at the single-molecule level, due to its specificity, sensitivity, and simplicity. However, traditional water-in-oil (W/O) single emulsion (SE) droplets often present stability issues, affecting the accuracy and reproducibility of assay results. As an alternative, water-in-oil-in-water (W/O/W) double emulsion (DE) droplets offer superior stability and uniformity for droplet digital assays. Moreover, unlike SE droplets, DE droplets are compatible with commercially available flow cytometry instruments for high-throughput analysis. Despite these advantages, no study has demonstrated the use of DE droplets for CRISPR-based nucleic acid detection. In our study, we conducted a comparative analysis to assess the performance of SE and DE droplets in quantitative detection of human papillomavirus type 18 (HPV18) DNA based on CRISPR/Cas12a. We evaluated the stability of SEs and DEs by examining size variation, merging extent, and content interaction before and after incubation at different temperatures and time points. By integrating DE droplets with flow cytometry, we achieved high-throughput and high-accuracy CRISPR/Cas12a-based quantification of target HPV18 DNA. The DE platform, when paired with CRISPR/Cas12a and flow cytometry techniques, emerges as a reliable tool for absolute quantification of nucleic acid biomarkers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2024.116339 | DOI Listing |
Pharmaceutics
November 2024
School of Pharmacy, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA.
Skin inflammation represents a hallmark of many skin conditions, from psoriasis to eczema. Here, we present a novel microemulsion formulation for delivering a low dose of potent immunosuppressant, tacrolimus, to the skin for local inflammation control. The efficacy of topically delivered tacrolimus in controlling skin inflammation can be enhanced by packaging it into microemulsions.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea.
Recent advancements in polymer materials have enabled the synthesis of bio-based monomers from renewable resources, promoting sustainable alternatives to fossil-based materials. This study presents a novel zwitterionic surfactant, SF, derived from 10-undecenoic acid obtained from castor oil through a four-step reaction, achieving a yield of 78%. SF has a critical micelle concentration (CMC) of 1235 mg/L, slightly higher than the commercial anionic surfactant Rhodacal DS-4 (sodium dodecyl benzene sulfonate), and effectively stabilizes monomer droplets, leading to excellent conversion and stable latex formation.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Division of Chemical Engineering and Equipment, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland.
The paper presents the results of research on the rheological properties and stability of oil-in-water emulsions containing cellulose derivatives: methylcellulose, hydroxyethylcellulose, and hydroxypropylmethylcellulose. The continuous phase of the emulsion was a 70% ethanol (EtOH) solution by volume. The dispersed phase consisted of mineral, linseed, and canola oils (20% by volume).
View Article and Find Full Text PDFFoods
December 2024
College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China.
Pickering emulsions (PEs) of natural plant proteins enriched in fat-soluble components are gaining consumer interest for healthier and sustainable products. The aim of this study is to prepare PEs for stabilizing almond protein isolated (API) particles loaded with astaxanthin using ultrasound technology. The loose structure of the API at pH levels of 3 and 12, with contact angles of 68.
View Article and Find Full Text PDFFoods
December 2024
SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
The effect of tilapia skin gelatin properties on the characteristics of high internal phase emulsions (HIPEs) and the quality of 3D printing remains unidentified. In this work, HIPEs were constructed by gelatin with various properties that were obtained by heat treatment. The results indicated that the gelatin undergoes degradation gradually with an increase in heating intensity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!