Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers.

Chem Rev

Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Published: May 2024

Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both and . These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11122139PMC
http://dx.doi.org/10.1021/acs.chemrev.3c00894DOI Listing

Publication Analysis

Top Keywords

engineering trnas
12
trnas ribosomal
8
non-proteinogenic monomers
8
genetic code
8
engineering
4
ribosomal translation
4
translation non-proteinogenic
4
monomers ribosome-dependent
4
ribosome-dependent protein
4
protein biosynthesis
4

Similar Publications

The complete mitochondrial genomes of and .

Mitochondrial DNA B Resour

January 2025

Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Mississippi State, Mississippi, USA.

We present a novel mitogenome assembly of the Redlip Shiner, , and assemblies for the Greenhead Shiner, (Cypriniformes: Leuciscidae). Both are charismatic minnows in the taxonomic group and are endemic to the eastern United States. The genome contains 16,711bp and 16,706bp each comprising a total of 13 protein coding genes, 22 tRNAs, two rRNAs, and a control region.

View Article and Find Full Text PDF

mRNA display is an effective tool to identify high-affinity macrocyclic binders for challenging protein targets. The success of an mRNA display selection is dependent on generating highly diverse libraries with trillions of peptides. While translation elongation can canonically accommodate the 61 proteinogenic triplet codons, translation initiation is restricted to the native start codon AUG.

View Article and Find Full Text PDF

The utilization of chemical pesticides recovers 30%-40% of food losses. However, their application has also triggered a series of problems, including food safety, environmental pollution, pesticide resistance, and incidents of poisoning. Consequently, green pesticides are increasingly seen as viable alternatives to their chemical counterparts.

View Article and Find Full Text PDF

DNA-damaging agents (DDAs) have long been used in cancer therapy. However, the precise mechanisms by which DDAs induce cell death are not fully understood and drug resistance remains a major clinical challenge. Schlafen 11 (SLFN11) was identified as the gene most strongly correlated with the sensitivity to DDAs based on mRNA expression levels.

View Article and Find Full Text PDF

is a heterotrophic bacterium commonly found in diverse marine environments. Here, we report the complete genome sequence of strain SOCE 003, which is 5,154,101 bp long, encoding 5,524 annotated protein-coding genes, 39 tRNAs, and 8 rRNAs. This genome information will help us understand the ecology of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!