AI Article Synopsis

  • Synthetic phenolic antioxidants (SPAs) and transformation products (TPs) are common neurotoxic pollutants, but their effects on the central nervous system (CNS) and ability to cross the blood-brain barrier are not well understood.
  • This study analyzed serum and cerebrospinal fluid (CSF) samples from 62 children in Guangzhou, revealing significant levels of various SPAs and TPs, particularly BHT and others, in both fluids.
  • Findings indicate that the penetration of these substances across the blood-CSF barrier is influenced by their chemical properties and that the integrity of the barrier plays a crucial role in this process, highlighting concerns about human exposure to these pollutants.

Article Abstract

Synthetic phenolic antioxidants (SPAs) and relevant transformation products (TPs) are potentially neurotoxic pollutants to which humans are widely exposed. However, their penetration behavior across the brain barrier and associated exposure to the central nervous system (CNS) remain unknown. This study is the first to investigate a wide range of 30 SPAs and TPs, including emerging SPAs, in matched serum and cerebrospinal fluid (CSF) samples from children in Guangzhou, China. Sixty-two children of either sex aged <14 years with nonbloody CSF and complete clinical information were included. The findings demonstrated the ubiquitous occurrence of many SPAs and TPs, particularly BHT, 2,4-di--butylphenol (DBP), AO 1010, AO 1076, BHT-Q, and BHT-quinol, not only in serum but also in the CSF. Median total concentrations of SPAs and TPs were up to 22.0 and 2.63 ng/mL in serum and 14.5 and 2.11 ng/mL in CSF, respectively. On calculating the penetration efficiencies across the blood-CSF barrier (BCSFB) (, / for selected SPAs and TPs, their values (median 0.52-1.41) were highly related to their physicochemical properties, indicating that passive diffusion may be the potential mechanism of BCSFB penetration. In addition, the values were positively correlated with the barrier permeability index (Albumin/Albumin), indicating that barrier integrity is an important determinant of BCSFB penetration. Overall, these results will improve our perception of human internal exposure to SPAs and lay a solid foundation for assessing the risk of CNS exposure to various SPAs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.4c01423DOI Listing

Publication Analysis

Top Keywords

synthetic phenolic
8
phenolic antioxidants
8
cerebrospinal fluid
8
ubiquity synthetic
4
antioxidants children's
4
children's cerebrospinal
4
fluid south
4
south china
4
china evidence
4
evidence penetration
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!