Frontotemporal dementia: from genetics to therapeutic approaches.

Expert Opin Investig Drugs

Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.

Published: June 2024

Introduction: Frontotemporal dementia (FTD) includes a group of neurodegenerative diseases characterized clinically by behavioral disturbances and by neurodegeneration of brain anterior temporal and frontal lobes, leading to atrophy. Apart from symptomatic treatments, there is, at present, no disease-modifying cure for FTD.

Areas Covered: Three main mutations are known as causes of familial FTD, and large consortia have studied carriers of mutations, also in preclinical Phases. As genetic cases are the only ones in which the pathology can be predicted in life, compounds developed so far are directed toward specific proteins or mutations. Herein, recently approved clinical trials will be summarized, including molecules, mechanisms of action and pharmacological testing.

Expert Opinion: These studies are paving the way for the future. They will clarify whether single mutations should be addressed rather than common proteins depositing in the brain to move from genetic to sporadic FTD.

Download full-text PDF

Source
http://dx.doi.org/10.1080/13543784.2024.2349286DOI Listing

Publication Analysis

Top Keywords

frontotemporal dementia
8
dementia genetics
4
genetics therapeutic
4
therapeutic approaches
4
approaches introduction
4
introduction frontotemporal
4
dementia ftd
4
ftd includes
4
includes group
4
group neurodegenerative
4

Similar Publications

Long-Term Multimodal Exercise Intervention for Patients with Frontotemporal Lobar Degeneration: Feasibility and Preliminary Outcomes.

Dement Geriatr Cogn Dis Extra

December 2024

Division of Clinical Medicine, Department of Psychiatry, Institute of Medicine, University of Tsukuba, Tsukuba, Japan.

Introduction: After Alzheimer's disease, frontotemporal lobar degeneration (FTLD) is the second most common form of early-onset dementia. Despite the heavy burden of care for FTLD, pharmacological and non-pharmacological treatments with sufficient efficacy remain scarce. This study aimed to evaluate the feasibility of a multimodal exercise program for FTLD and to examine preliminary changes in the clinical outcomes of the program in FTLD.

View Article and Find Full Text PDF

The natural compound orotic acid and its anionic form, orotate, play a pivotal role in various biological processes, serving as essential intermediates in pyrimidine de novo synthesis, with demonstrated connections to dietary, supplement, and neurodrug applications. A novel perspective on biomolecular aggregation at the nanoscale, particularly pertinent to neurodegeneration, challenges the established paradigm positing that peptide (amyloid beta) and protein (tau) aggregation mainly govern the molecular events underlying prevalent neuropathologies. Emerging biological evidence indicates a notable role for G-quadruplex (G4) DNA aggregation in neurodegenerative processes affecting neuronal cells, particularly in the presence of extended (GC) repeats in nuclear DNA sequences.

View Article and Find Full Text PDF

Background And Objectives: Chronic kidney disease (CKD) is known to be associated with increased plasma phosphorylated tau217 (p-tau217) concentrations, potentially confounding the utility of plasma p-tau217 measurements as a marker of amyloid pathology in individuals with suspected Alzheimer disease (AD). In this study, we quantitatively investigate the relationship of plasma p-tau217 concentrations vs estimated glomerular filtration rate (eGFR) in individuals with CKD with and without amyloid pathology.

Methods: This was a retrospective examination of data from 2 observational cohorts from either the Mayo Clinic Study of Aging or the Alzheimer's Disease Research Center cohorts.

View Article and Find Full Text PDF

Epigenetics in Neurodegenerative Diseases.

Subcell Biochem

January 2025

Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.

Healthy brain functioning requires a continuous fine-tuning of gene expression, involving changes in the epigenetic landscape and 3D chromatin organization. Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD) are three multifactorial neurodegenerative diseases (NDDs) that are partially explained by genetics (gene mutations and genetic risk factors) and influenced by non-genetic factors (i.e.

View Article and Find Full Text PDF

Epigenetics in Learning and Memory.

Subcell Biochem

January 2025

Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.

In animals, memory formation and recall are essential for their survival and for adaptations to a complex and often dynamically changing environment. During memory formation, experiences prompt the activation of a selected and sparse population of cells (engram cells) that undergo persistent physical and/or chemical changes allowing long-term memory formation, which can last for decades. Over the past few decades, important progress has been made on elucidating signaling mechanisms by which synaptic transmission leads to the induction of activity-dependent gene regulation programs during the different phases of learning (acquisition, consolidation, and recall).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!