The Arabidopsis RTH plays an important role in regulation of iron (Fe) absorption and transport.

Plant Cell Rep

Shandong Key Laboratory of Plant Biotechnology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.

Published: April 2024

RTH may activate Fe assimilation related genes to promote Fe absorption, transport and accumulation in Arabidopsis. Iron (Fe) is an important nutrient element. The Fe absorption and transport in plants are well investigated over the past decade. Our previous work indicated that RTE1-HOMOLOG (RTH), the homologous gene of reversion-to-ethylene sensitivity 1 (RTE1), plays a role in ethylene signaling pathway. However, its function in Fe absorption and transport is largely unknown. In the present study, we found that RTH was expressed in absorptive tissue and conducting tissue, including root hairs, root vascular bundle, and leaf veins. Under high Fe concentration, the seedling growth of rth-1 mutant was better, while the RTH overexpression lines were retarded compared to the wild type (Col-0). When treated with EDTA-Fe (400 μM), the chlorophyll content and ion leakage rate were higher and lower in rth-1 than those of Col-0, respectively. By contrast, the chlorophyll contents and ion leakage rates of RTH overexpression lines were decreased and hastened compared with Col-0, respectively. Fe measurement indicated that the Fe contents of rth-1 were lower than those of Col-0, whereas those of RTH overexpression lines were comparably higher. Gene expression analysis revealed that Fe absorption and transport genes AHA2, IRT1, FIT, FPN1, and YSL1 decreased in rth-1 but increased in RTH overexpression lines compared with Col-0. Additionally, Y2H (yeast two-hybrid) and BiFC (bimolecular fluorescence complementation) assays showed that RTH can physically interact with hemoglobin 1 (HB1) and HB2. All these findings suggest that RTH may play an important role in regulation of Fe absorption, transport, and accumulation in Arabidopsis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-024-03214-xDOI Listing

Publication Analysis

Top Keywords

absorption transport
24
rth overexpression
16
overexpression lines
16
rth
9
plays role
8
role regulation
8
transport accumulation
8
accumulation arabidopsis
8
ion leakage
8
compared col-0
8

Similar Publications

Green Tea Catechins as Perpetrators of Drug Pharmacokinetic Interactions.

Clin Pharmacol Ther

January 2025

Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.

Green tea (Camellia sinensis) is a commonly consumed beverage or dietary supplement. As a natural product with a myriad of proposed health benefits, patients are likely to consume green tea while taking their medications unaware of its potential to interact with drugs and influence drug efficacy and safety. Catechins are the abundant polyphenolic compounds in green tea (e.

View Article and Find Full Text PDF

Wireless energy-responsive systems provide a foundational platform for powering and operating intelligent devices. However, current electronic systems relying on complex components limit their effective deployment in ambient environment and seamless integration of energy harvesting, storage, sensing, and communication. Here, we disclose a coupling effect of electromagnetic wave absorption and moist-enabled generation on carrier transportation and energy interaction regulated by ionic diode effect.

View Article and Find Full Text PDF

Two-Dimensional transition metal dichalcogenides have been the subject of extensive attention thanks to their unique properties and atomically thin structure. Because of its unprecedented room-temperature magnetic properties, iron-doped MoS (Fe:MoS) is considered the next-generation quantum and magnetic material. It is essential to understand Fe:MoS's thermal behavior since temperature and thermal load/activation are crucial for their magnetic properties and the current nano and quantum devices have been severely limited by thermal management.

View Article and Find Full Text PDF

Spatiotemporal Spectroscopy of Fast Excited-State Diffusion in 2D Covalent Organic Framework Thin Films.

J Am Chem Soc

January 2025

Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, Munich 81377, Germany.

Covalent organic frameworks (COFs), crystalline and porous conjugated structures, are of great interest for sustainable energy applications. Organic building blocks in COFs with suitable electronic properties can feature strong optical absorption, whereas the extended crystalline network can establish a band structure enabling long-range coherent transport. This peculiar combination of both molecular and solid-state materials properties makes COFs an interesting platform to study and ultimately utilize photoexcited charge carrier diffusion.

View Article and Find Full Text PDF

Programmable Food-Derived Peptide Coassembly Strategies for Boosting Targeted Colitis Therapy by Enhancing Oral Bioavailability and Restoring Gut Microenvironment Homeostasis.

ACS Nano

January 2025

Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.

Orally targeting nanostrategies of multiple nutraceuticals have attracted increasing attention in ulcerative colitis (UC) therapy for superior patient compliance, cost-effectiveness, and biocompatibility. However, the actual targeting delivery and bioefficacy of nutraceuticals are extremely restricted by their poor solubility, interior gastrointestinal retention, and base permeability. Herein, we developed controllable colon-targeting nanoparticles (NPs) composed of a quaternary ammonium chitosan (HTCC) shell and succinic acid-modified γ-cyclodextrin (SACD) core for precise UC treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!