Lethal combination for seedlings: extreme heat drives mortality of drought-exposed high-elevation pine seedlings.

Ann Bot

Department of Natural Resources & Environmental Science, University of Nevada Reno, 1664 N. Virginia St, Reno, NV, 89557, USA.

Published: April 2024

Background And Aims: Hotter drought- and biotically-driven tree mortality are expected to increase with climate change in much of the western United States, and species persistence will depend upon ongoing establishment under novel conditions or migration to track ecological niche requirements. High-elevation tree species may be particularly vulnerable to increasing water stress as snowpack declines, increasing the potential for adult mortality and simultaneous regeneration failures. Seedling survival will be determined by ecophysiological limitations in response to changing water availability and temperature.

Methods: We exposed seedlings from populations of Pinus longaeva, Pinus flexilis, and Pinus albicaulis to severe drought and concurrent temperature stress in common gardens testing timing of drought onset under two different temperature regimes. We monitored seedling functional traits, physiological function, and survival.

Key Results: The combined stressors of water limitation and extreme heat led to conservative water use strategies and declines in physiological function, with these joint stressors ultimately exceeding species' tolerances and leading to complete episodic mortality across all species. Growing conditions were the primary determinant of seedling trait expression, with seedlings exhibiting more drought-resistant traits such as lower specific leaf area in the hottest, driest treatment conditions. Water stress-induced stomatal closure was also widely apparent. Under adequate soil moisture, seedlings endured prolonged exposure to high air and surface temperatures, suggesting broad margins for survival.

Conclusions: The critical interaction between soil moisture and temperature suggests that rising temperatures will exacerbate growing season moisture stress. Our results highlight the importance of local conditions over population- and species-level influences in shaping strategies for stress tolerance and resistance to desiccation at this early life stage. By quantifying some of the physiological consequences of drought and heat that lead to seedling mortality, we can better understand the future effects of global change on the composition and distribution of high-elevation conifer forests.

Download full-text PDF

Source
http://dx.doi.org/10.1093/aob/mcae064DOI Listing

Publication Analysis

Top Keywords

extreme heat
8
physiological function
8
soil moisture
8
seedlings
5
mortality
5
water
5
lethal combination
4
combination seedlings
4
seedlings extreme
4
heat drives
4

Similar Publications

Background: Rising global temperatures and increased use of personal protective equipment has led to increased risk of heat stress amongst healthcare professionals. This review synthesizes recent research on the impact of heat and heat mitigation strategies on healthcare professionals across disciplines and settings.

Method: Databases were systematically searched using keywords and data from included studies were extracted for content analysis.

View Article and Find Full Text PDF

Sheep in Italy are exposed to heat stress (HS) for several months, increasing the risk of HS-related problems such as the decrease in growth, reproductive performance, milk quantity and quality and natural immunity. This study aimed to assess changes in hematological and biochemical parameters in dairy sheep from three different farms with varying pasture management: A (no water or shade), B (water but no shade), and C (both water and shade). From March to June, when HS risk is high, monthly blood samples (T1-T4) were collected from 20 sheep per farm (total n = 60).

View Article and Find Full Text PDF

What drives farmers' behavior under climate change? Decoding risk awareness, perceived impacts, and adaptive capacity in northern Italy.

Heliyon

January 2025

Environmental Intelligence for Global Change Lab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133, Milan, Italy.

Understanding climate change in a precise and timely manner may assist in gauging the occurrence and seriousness of its impacts, thereby boosting the adaptive capacity and responsiveness of farmers. This investigation looks into farmers' knowledge of climate change, their perception of risks and impacts, and the strategies they anticipate to tackle the challenges of adaptation. A well-structured online survey covering risk awareness, perception, and adaptation was used to randomly sample 460 respondents from 12 irrigation districts in northern Italy.

View Article and Find Full Text PDF

The NAT1-bHLH110-CER1/CER1L module regulates heat stress tolerance in rice.

Nat Genet

January 2025

State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China.

Rice production is facing substantial threats from global warming associated with extreme temperatures. Here we report that modifying a heat stress-induced negative regulator, a negative regulator of thermotolerance 1 (NAT1), increases wax deposition and enhances thermotolerance in rice. We demonstrated that the C2H2 family transcription factor NAT1 directly inhibits bHLH110 expression, and bHLH110 directly promotes the expression of wax biosynthetic genes CER1/CER1L under heat stress conditions.

View Article and Find Full Text PDF

The association between short-term apparent temperature exposure and human coagulation: A time-series study from Beijing, 2014-2023.

Environ Int

January 2025

Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China.

A growing body of evidence suggests that non-optimal ambient temperatures are associated with increased incidence rate and mortality of thromboembolic diseases. We aim to investigate the association between apparent temperature (AT) and coagulation, which is a central pathological link in the formation of thrombi. In this study, we conducted a time series analysis using data from 18,894 participants collected from a health check-up center in Beijing between 2014 and 2023, and validated our findings using 20,549 participants from an andrology outpatient clinic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!