Sepsis-induced myocardial dysfunction (SIMD) is associated with poor prognosis and increased mortality in patients with sepsis. Cytokines are important regulators of both the initiation and progression of sepsis. Interleukin-15 (IL-15), a pro-inflammatory cytokine, has been linked to protective effects against myocardial infarction and myocarditis. However, the role of IL-15 in SIMD remains unclear. We established a mouse model of SIMD via cecal ligation puncture (CLP) surgery and a cell model of myocardial injury via lipopolysaccharide (LPS) stimulation. IL-15 expression was prominently upregulated in septic hearts as well as cardiomyocytes challenged with LPS. IL-15 pretreatment attenuated cardiac inflammation and cell apoptosis and improved cardiac function in the CLP model. Similar cardioprotective effects of IL-15 pretreatment were observed in vitro. As expected, IL-15 knockdown had the opposite effect on LPS-stimulated cardiomyocytes. Mechanistically, we found that IL-15 pretreatment reduced the expression of the pro-apoptotic proteins cleaved caspase-3 and Bax and upregulated the anti-apoptotic protein Bcl-2. RNA sequencing and Western blotting further confirmed that IL-15 pretreatment suppressed the activation of nuclear factor kappa B (NF-κB) signaling in mice with sepsis. Besides, the addition of NF-κB inhibitor can significantly attenuate cardiomyocyte apoptosis compared to the control findings. Our results suggest that IL-15 pretreatment attenuated the cardiac inflammatory responses and reduced cardiomyocyte apoptosis by partially inhibiting NF-κB signaling in vivo and in vitro, thereby improving cardiac function in mice with sepsis. These findings highlight a promising therapeutic strategy for SIMD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110722PMC
http://dx.doi.org/10.4081/ejh.2024.4019DOI Listing

Publication Analysis

Top Keywords

il-15 pretreatment
20
nf-κb signaling
12
il-15
9
inhibiting nf-κb
8
sepsis-induced myocardial
8
myocardial dysfunction
8
pretreatment attenuated
8
attenuated cardiac
8
cardiac function
8
mice sepsis
8

Similar Publications

In this study, we observed the effect of the newly isolated probiotic strain Limosilactobacillus reuteri B1/1 on the relative gene expression of selected cytokines (interleukin-15, transforming growth factor-β4), tight junction proteins (E-cadherin, occludin), biomarker active intestinal stem cells - LGR5 (leucine-rich repeat containing G protein-coupled receptor), markers of mucosal intestinal immunity (mucin-2, immunoglobulin A), as well as the creation of a new biomarker of inflammation in the intestine - calprotectin on an ex vivo model of chicken ileal explant in the prevention of Salmonella Enteritidis PT4 infection. The ability of L. reuteri B1/1 to effectively modulate the mucosal immune response under pretreatment conditions in S.

View Article and Find Full Text PDF

Background: In the era of immune checkpoint blockade, the role of cancer vaccines in immune priming has provided additional potential for therapeutic improvements. Prior studies have demonstrated delayed type hypersensitivity and anti-tumor immunity with vaccines engineered to secrete granulocyte-macrophage colony-stimulating factor (GM-CSF). The safety, efficacy and anti-tumor immunity of GM-CSF secreting vaccine in patients with previously treated stage III or IV melanoma needs further investigation.

View Article and Find Full Text PDF

An insufficient quantity of functional T cells is a likely factor limiting the clinical activity of T-cell bispecific antibodies, especially in solid tumor indications. We hypothesized that XmAb24306 (efbalropendekin alfa), a lymphoproliferative interleukin (IL)-15/IL-15 receptor α (IL-15Rα) Fc-fusion protein, may potentiate the activity of T-cell dependent (TDB) antibodies. The activation of human peripheral T cells by cevostamab, an anti-FcRH5/CD3 TDB, or anti-HER2/CD3 TDB resulted in the upregulation of the IL-2/15Rβ (CD122) receptor subunit in nearly all CD8+ and majority of CD4+ T cells, suggesting that TDB treatment may sensitize T cells to IL-15.

View Article and Find Full Text PDF

Human natural killer (NK) cell-based therapies are under assessment for treating various cancers, but cryopreservation reduces both the recovery and function of NK cells, thereby limiting their therapeutic feasibility. Using cryopreservation protocols optimized for T cells, here we find that ~75% of NK cells die within 24 h post-thaw, with the remaining cells displaying reduced cytotoxicity. Using CRISPR-Cas9 gene editing and confocal microscopy, we find that cryopreserved NK cells largely die via apoptosis initiated by leakage of granzyme B from cytotoxic vesicles.

View Article and Find Full Text PDF

Sepsis-induced myocardial dysfunction (SIMD) is associated with poor prognosis and increased mortality in patients with sepsis. Cytokines are important regulators of both the initiation and progression of sepsis. Interleukin-15 (IL-15), a pro-inflammatory cytokine, has been linked to protective effects against myocardial infarction and myocarditis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!