Structural DNA nanotechnology enables custom fabrication of nanoscale devices and promises diverse biological applications. However, the effects of design on DNA nanostructure (DN)-cell interactions in vitro and in vivo are not yet well-characterized. origamiFISH is a recently developed technique for imaging DNs in cells and tissues. Compared to the use of fluorescent tags, origamiFISH offers label-free and structure-agnostic detection of DNs with significantly improved sensitivity. Here, the origamiFISH technique is extended to quantify DNs in single-cell suspensions, including in nonadherent cells such as subsets of immune cells, via readout by flow cytometry. This method, referred to as origamiFISH-Flow, is high-throughput (e.g., 10 000 cells per second) and compatible with immunostaining for concurrent cell-type and cell-state characterization. It is shown that origamiFISH-Flow provides 20-fold higher signal-to-noise ratio for DN detection compared to dye labeling approaches, leading to the capture of >25-fold more DN cells under single-picomolar DN uptake concentrations. Additionally, the use of origamiFISH-Flow is validated to profile the uptake of various DN shapes across multiple cell lines and splenocytes, as well as to quantify in vivo DN accumulation in lymphoid organs. Together, origamiFISH-Flow offers a new tool to interrogate DN interactions with cells and tissues, while providing insights for tailoring their designs in bio-applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202400236 | DOI Listing |
Nutrients
December 2024
Department of Dermatology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
Background/objective: Ultraviolet (UV) B radiation leads to DNA damage by generating cyclobutane pyrimidine dimers (CPDs). UVB-induced CPDs can also result in immune suppression, which is a major risk factor for non-melanoma skin cancer (NMSC). UVB-induced CPDs are repaired by nucleotide repair mechanisms (NER) mediated by xeroderma pigmentosum complementation group A (XPA).
View Article and Find Full Text PDFCancer immunotherapy using engineered cytotoxic effector cells has demonstrated significant potential. The limited spatial complexity of existing models, however, poses a challenge to mechanistic studies attempting to approve existing approaches of effector cell-mediated cytotoxicity within a three-dimensional, solid tumor-like environment. To gain additional experimental control, we developed an approach for constructing three-dimensional (3D) culture models using smart polymers that form temperature responsive hydrogels.
View Article and Find Full Text PDFHum Gene Ther
January 2025
School of Bioengineering, East China University of Science and Technology, Shanghai, China.
Adeno-associated virus (AAV)-associated gene therapy has been increasingly promising, in light of the drugs progressed to clinical trials or approved for medications internationally. Therefore, scalable and efficient production of recombinant AAV is pivotal for advancing gene therapy. Traditional methods, such as the triple-plasmid transfection of human embryonic kidney 293 cells in suspension culture, have been widely employed but often hampered by low unit yield.
View Article and Find Full Text PDFToxicol Sci
January 2025
Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07103.
Phthalates are known endocrine disrupting chemicals and ovarian toxicants that are used widely in consumer products. Phthalates have been shown to exert ovarian toxicity on multiple endpoints, altering transcription of genes responsible for normal ovarian function. However, the molecular mechanisms by which phthalates act on the ovary are not well understood.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Chapman University, Irvine, CA, United States.
Background: Due to its location, the ocular surface is exposed to environmental microbes. Innate immune cells including macrophages are first line defense against infections. exposure to high glucose as well as diabetes-associated hyperglycemia has been shown to affect innate immune cell function and population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!