Many nucleoside triphosphate-diphosphohydrolases (NTPDases/APYRASEs, APYs) play a key role in modulating extracellular nucleotide levels. However, the Golgi-localized APYs, which help control glycosylation, have rarely been studied. Here, we identified AtAPY1, a gene encoding an NTPDase in the Golgi apparatus, which is required for cell wall integrity and plant growth under boron (B) limited availability. Loss of function in AtAPY1 hindered cell elongation and division in root tips while increasing the number of cortical cell layers, leading to swelling of the root tip and abundant root hairs under low B stress. Further, expression pattern analysis revealed that B deficiency significantly induced AtAPY1, especially in the root meristem and stele. Fluorescent-labeled AtAPY1-GFP localized to the Golgi stack. Biochemical analysis showed that AtAPY1 exhibited a preference of UDP and GDP hydrolysis activities. Consequently, the loss of function in AtAPY1 might disturb the homoeostasis of NMP-driven NDP-sugar transport, which was closely related to the synthesis of cell wall polysaccharides. Further, cell wall-composition analysis showed that pectin content increased and borate-dimerized RG-II decreased in apy1 mutants, along with a decrease in cellulose content. Eventually, altered polysaccharide characteristics presumably cause growth defects in apy1 mutants under B deficiency. Altogether, these data strongly support a novel role for AtAPY1 in mediating responses to low B availability by regulating cell wall integrity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ppl.14320 | DOI Listing |
Mol Breed
January 2025
Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China.
Unlabelled: Citrus canker is a devastating disease caused by subsp. (), which secretes the effector PthA4 into host plants to trigger transcription of the susceptibility gene , resulting in pustule formation. However, the molecular mechanism underlying CsLOB1-mediated susceptibility to remains elusive.
View Article and Find Full Text PDFNagoya J Med Sci
November 2024
Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Peribronchiolar metaplasia is an uncommon lesion characterized by fibrosis and bronchiolar epithelial cell proliferation along the peribronchiolar alveolar walls, primarily in response to bronchiolar and peribronchiolar injuries. Peribronchiolar metaplasia usually appears as ground glass nodules or sub-solid nodules on computed tomography. However, we present an exceptional case of peribronchiolar metaplasia that appeared as a solitary solid nodule on computed tomography.
View Article and Find Full Text PDFNat Med
January 2025
Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.
Following our previous experience with cardiac xenotransplantation of a genetically modified porcine heart into a live human, we sought to achieve improved results by selecting a healthier recipient and through more sensitive donor screening for potential zoonotic pathogens. Here we transplanted a 10-gene-edited pig heart into a 58-year-old man with progressive, debilitating inotrope-dependent heart failure due to ischemic cardiomyopathy who was not a candidate for standard advanced heart failure therapies. He was maintained on a costimulation (anti-CD40L, Tegoprubart) blockade-based immunomodulatory regimen.
View Article and Find Full Text PDFSci Rep
January 2025
School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
Several mungbean (Vigna radiata (L.) Wilczek) cultivars are susceptible to Cercospora leaf spot (CLS) caused by Cercospora canescens Ellis & Martin, and it is necessary to explore resistance sources and understand resistance mechanisms. However, the CLS resistance mechanisms have not yet been explored.
View Article and Find Full Text PDFSci Rep
January 2025
Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea.
The close genetic resemblance between Listeria monocytogenes and Listeria innocua, combined with their presence in similar environments, poses challenges for species-specific detection in food products. Ensuring food safety through microbiological standards necessitates reliable detection of pathogens like L. monocytogenes and L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!