Effects of monovalent and divalent cations on the rheology of entangled DNA.

Soft Matter

School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.

Published: May 2024

In this paper we investigate the effects of varying cation valency and concentration on the rheology of entangled DNA solutions. We show that monovalent cations moderately increase the viscoelasticty of the solutions mainly by stabilising linear concatenation of DNA "monomers" hybridisation of their sticky ends. On the contrary, divalent cations have a far more complex and dramatic effect on the rheology of the solution and we observe evidence of inter-molecular DNA-DNA bridging by Mg. We argue that these results may be interesting in the context of dense solutions of single and double stranded DNA, or in biotechnology applications such as DNA origami and DNA hydrogels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095498PMC
http://dx.doi.org/10.1039/d3sm00957bDOI Listing

Publication Analysis

Top Keywords

divalent cations
8
rheology entangled
8
entangled dna
8
dna
6
effects monovalent
4
monovalent divalent
4
cations rheology
4
dna paper
4
paper investigate
4
investigate effects
4

Similar Publications

The ternary transition-metal cyanamide MnCr(NCN) was synthesized by a solid-state metathesis reaction between MnCl, CrCl, and ZnNCN. Powder X-ray diffraction reveals that MnCr(NCN) adopts an orthorhombic [NiAs]-derived structure with symmetry, featuring a hexagonally close-packed array of NCN with metal cations in 3/4 of the octahedral interstitial holes. The question of cation order was addressed via the combinatorial use of X-ray powder diffraction, neutron powder diffraction, electron diffraction, and HAADF-STEM measurements.

View Article and Find Full Text PDF

End-of-life lithium-ion batteries (LIBs) present an opportunity to generate a circular economy through recycling. One of the techniques that can contribute to the purification of leached batteries is electrodialysis. In this work, we present a study of current variation in relation to monovalent (Li), divalent (Ni and Co) and trivalent (Al) cations from the synthetic solution of an NCA-type lithium-ion battery leachate, using electrodialysis membranes (HDX-100 and HDX-200) at three different current densities (12.

View Article and Find Full Text PDF

Nucleation-Controlled Crystallization of Chiral 2D Perovskite Single Crystal Thin Films for High-Sensitivity Circularly Polarized Light Detection.

Adv Mater

January 2025

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.

2D Dion-Jacobson (DJ) chiral perovskite materials exhibit significant promise for developing high-performance circularly polarized light (CPL) photodetectors. However, the inherently thick nature of DJ-phase 2D perovskite single crystal limits their ability to differentiate CPL photons with the two opposite polarization states. In addition, the growth of DJ-phase perovskite single crystal thin films (SCTFs) has proven challenging due to the strong interlayer electronic coupling.

View Article and Find Full Text PDF

Polymyxins, critical last-resort antibiotics, impact the distribution of membrane-bound divalent cations in the outer membrane of Gram-negative bacteria. We employed atomistic molecular dynamics simulations to model the effect of displacing these ions. Two polymyxin-sensitive and two polymyxin-resistant models of the outer membrane of were investigated.

View Article and Find Full Text PDF

A mechanistic insight into whey protein isolate (WPI) fibrillation driven by divalent cations.

Food Chem

January 2025

Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Azadi Sq., Mashhad, Khorasan Razavi P.O. Box 9177948944, Iran. Electronic address:

Protein fibrillation complex mechanisms led to an emerging trend in research for years. The mechanisms behind whey protein isolate (WPI) fibrillation driven by divalent cations remained still a matter of speculation. All cations (Ca, Fe, Mg, and Zn) enhanced the microenvironment polarity through π-π stacking, and the amide I and II shifts confirmed the fibrillation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!