Majority of the existing SARS-CoV-2 vaccines work by presenting the whole pathogen in the attenuated form to immune system to invoke an immune response. On the other hand, the concept of a peptide based vaccine (PBV) is based on the identification and chemical synthesis of only immunodominant peptides known as T-cell epitopes (TCEs) to induce a specific immune response against a particular pathogen. However PBVs have received less attention despite holding huge untapped potential for boosting vaccine safety and immunogenicity. To identify these TCEs for designing PBV, wet-lab experiments are difficult, expensive, and time-consuming. Machine learning (ML) techniques can accurately predict TCEs, saving time and cost for speedy vaccine development. This work proposes novel hybrid ML techniques based on the physicochemical properties of peptides to predict SARS-CoV-2 TCEs. The proposed hybrid ML technique was evaluated using various ML model evaluation metrics and demonstrated promising results. The hybrid technique of decision tree classifier with chi-squared feature weighting technique and forward search optimal feature searching algorithm has been identified as the best model with an accuracy of 98.19%. Furthermore, K-fold cross-validation (KFCV) was performed to ensure that the model is reliable and the results indicate that the hybrid random forest model performs consistently well in terms of accuracy with respect to other hybrid approaches. The predicted TCEs are highly likely to serve as promising vaccine targets, subject to evaluations both and . This development could potentially save countless lives globally, prevent future epidemic-scale outbreaks, and reduce the risk of mutation escape.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057572PMC
http://dx.doi.org/10.7717/peerj-cs.1980DOI Listing

Publication Analysis

Top Keywords

machine learning
8
t-cell epitopes
8
vaccine targets
8
immune response
8
hybrid technique
8
hybrid
6
vaccine
5
tces
5
physicochemical properties-based
4
properties-based hybrid
4

Similar Publications

A prediction model for electrical strength of gaseous medium based on molecular reactivity descriptors and machine learning method.

J Mol Model

January 2025

Hubei Key Laboratory·for High-Efficiency-Utilization of Solar Energy and Operation, Control of Energy-Storage System, Hubei-University of Technology, Wuhan, 430068, China.

Context: Ionization and adsorption in gas discharge are similar to electrophilic and nucleophilic reactions. The molecular descriptors characterizing reactions such as electrostatic potential descriptors are useful in predicting the electrical strength of environmentally friendly gases. In this study, descriptors of 73 molecules are employed for correlation analysis with electrical strength.

View Article and Find Full Text PDF

Predicting fall parameters from infant skull fractures using machine learning.

Biomech Model Mechanobiol

January 2025

Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.

When infants are admitted to the hospital with skull fractures, providers must distinguish between cases of accidental and abusive head trauma. Limited information about the incident is available in such cases, and witness statements are not always reliable. In this study, we introduce a novel, data-driven approach to predict fall parameters that lead to skull fractures in infants in order to aid in determinations of abusive head trauma.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Risk-taking is a concerning yet prevalent issue during adolescence and can be life-threatening. Examining its etiological sources and evolving pathways helps inform strategies to mitigate adolescents' risk-taking behavior. Studies have found that unfavorable environmental factors, such as adverse childhood experiences (ACEs), are associated with momentary levels of risk-taking in adolescents, but little is known about whether ACEs shape the developmental trajectory of risk-taking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!