Finite element analysis of different carbon fiber reinforced polyetheretherketone dental implants in implant-supported fixed denture.

J Stomatol Oral Maxillofac Surg

Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Province Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China. Electronic address:

Published: September 2024

Objectives: The purpose of this study is to determine the feasibility of polyetheretherketone-based dental implants, and analyze the stress and strain around different kinds of dental implants by finite element analysis.

Methods: The radiographic data was disposed to models in Mimics 19.0. 3D models of implants, crowns and jawbones were established and combined in SolidWorks 2018. Appling axial and oblique loads of 100 N, cloud pictures were exported in Ansys Workbench 18.0 to calculate and analyze the stress and strain in and around different implants.

Results: Oblique load tended to deliver more stress to bone tissue than axial load. The uniformity of stress distribution was the best for 30% short carbon fiber reinforced polyetheretherketone implants at axial and buccolingual directions. Stress shielding phenomenon occurred at the neck of 60% continuous carbon fiber reinforced polyetheretherketone and titanium implants. Stress concentration appeared in PEEK implants and the load of bone tissue would aggravate.

Conclusions: 30% short carbon fiber reinforced polyetheretherketone implants demonstrate a more uniform stress distribution in bone-implant contact and surrounding bone than titanium. Stress shielding and stress concentration may be avoided in bone-implant interface and bone tissue. Bone disuse-atrophy may be inhibited in PEEK-based implants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jormas.2024.101902DOI Listing

Publication Analysis

Top Keywords

carbon fiber
16
fiber reinforced
16
reinforced polyetheretherketone
16
dental implants
12
bone tissue
12
implants
9
stress
9
finite element
8
analyze stress
8
stress strain
8

Similar Publications

Developing sustainable structural materials to replace traditional carbon-intensive structural materials fundamentally reshapes the concept of circular development. Herein, we propose an interface engineering strategy that utilizes water as a liquid medium to replace the residual air within natural wood. This approach minimizes the absorption of water-based softening agents by microcapillary channels of wood, enabling the controlled softening of the cell walls.

View Article and Find Full Text PDF

Shoes or insoles embedded with carbon fiber materials to increase longitudinal stiffness have been shown to enhance running and walking performance in elite runners, and younger adults, respectively. It is unclear, however, if such stiffness modifications can translate to enhanced mobility in older adults who typically walk with greater metabolic cost of transport compared to younger adults. Here, we sought to test whether adding footwear stiffness via carbon fiber insoles could improve walking outcomes (eg, distance traveled and metabolic cost of transport) in older adults during the 6-minute walk test.

View Article and Find Full Text PDF
Article Synopsis
  • PFAS are stable yet harmful chemicals, vital for modern technologies but persistent pollutants affecting health.
  • The study focuses on completely breaking down GenX, a PFAS replacement, using electrocatalysis in LiOH solutions with specialized nanocatalysts.
  • The approach is environmentally friendly, utilizing nonprecious materials and without the need for auxiliary chemicals, offering a potential solution to mitigate PFAS pollution.
View Article and Find Full Text PDF

This study introduces an innovative approach to enhancing recycled aggregate concrete (RAC) by incorporating nanosilica (NS) and natural fibers (NF), specifically sisal fiber (SF) and palm fiber (PF). This novel combination aims to overcome the inherent limitations of RAC, such as reduced strength and durability, while promoting sustainability in construction. The research focuses on evaluating the mechanical properties of RAC, including compressive and flexural strengths, through the integration of NS and NF.

View Article and Find Full Text PDF

Recovery of carbon fiber from carbon fiber reinforced plastics using alkali molten hydroxide.

Sci Rep

January 2025

Department of Materials Science, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.

High-strength carbon fibers were recovered by a new method, involving the decomposition of the thermosetting resin part of carbon fiber-reinforced plastic (CFRP) by heating it in a mixture of sodium hydroxide (NaOH) and potassium hydroxide (KOH). Alkali molten hydroxide was prepared by heating the mixture of NaOH and KOH at various ratios (NaOH: KOH = 1:0, 3:1, 1:1, 1:3, 0:1) at 400C, and the CFRP was then heated with the aforementioned alkali molten hydroxide under a nitrogen atmosphere at 200-400C for 0-90 min. Subsequently, the CFRP was washed with distilled water and filtered to recover the carbon fibers, and its tensile strength was estimated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!