Activation of Ca-dependent TMEM16 scramblases induces phosphatidylserine externalization, a key step in multiple signaling processes. Current models suggest that the TMEM16s scramble lipids by deforming the membrane near a hydrophilic groove and that Ca dependence arises from the different association of lipids with an open or closed groove. However, the molecular rearrangements underlying groove opening and how lipids reorganize outside the closed groove remain unknown. Here we directly visualize how lipids associate at the closed groove of Ca-bound fungal nhTMEM16 in nanodiscs using cryo-EM. Functional experiments pinpoint lipid-protein interaction sites critical for closed groove scrambling. Structural and functional analyses suggest groove opening entails the sequential appearance of two π-helical turns in the groove-lining TM6 helix and identify critical rearrangements. Finally, we show that the choice of scaffold protein and lipids affects the conformations of nhTMEM16 and their distribution, highlighting a key role of these factors in cryo-EM structure determination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41594-024-01284-9 | DOI Listing |
Naturwissenschaften
January 2025
Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia Universidade Federal de Santa Maria (CAPPA/UFSM, Rua Maximiliano Vizzotto, 59897230-00, São João do Polêsine, Rio Grande do Sul, Brazil.
Prozostrodontia is a clade of probainognathian cynodonts that exhibit several morphological innovations later inherited by mammals. The earliest representatives of this group have been found in the Upper Triassic deposits of southern Brazil. In this study, we report the discovery of a probainognathian cynodont from the Buriol site (São João do Polêsine, Rio Grande do Sul, Brazil), Hyperodapedon Assemblage Zone (Late Triassic).
View Article and Find Full Text PDFBackground: It is generally accepted that the greater palatine nerve and artery supply the palatal mucosa, gingiva, and glands, but not the bone or tooth adjacent to those tissues. When the bony palate is observed closely, multiple small foramina are seen on the palatal surface of the alveolar process. The authors hypothesized that the greater palatine nerve and artery might supply the maxillary teeth via the foramina on the palatal surface of the alveolar process and the superior alveolar nerve and artery.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
Quantification of intrahepatic covalently closed circular DNA (cccDNA) is a key for evaluating an elimination of hepatitis B virus (HBV) in infected patients. However, quantifying cccDNA requires invasive methods such as a liver biopsy, which makes it impractical to access the dynamics of cccDNA in patients. Although HBV RNA and HBV core-related antigens (HBcrAg) have been proposed as surrogate markers for evaluating cccDNA activity, they do not necessarily estimate the amount of cccDNA.
View Article and Find Full Text PDFNature
January 2025
Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
The abundance and sequence of satellite DNA at and around centromeres is evolving rapidly despite the highly conserved and essential process through which the centromere directs chromosome inheritance. The impact of such rapid evolution is unclear. Here we find that sequence-dependent DNA shape dictates packaging of pericentromeric satellites in female meiosis through a conserved DNA-shape-recognizing chromatin architectural protein, high mobility group AT-hook 1 (HMGA1).
View Article and Find Full Text PDFOpen Biol
December 2024
Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl, Russia.
The recently discovered Provora supergroup has primarily been examined to determine their phylogenomic position in the eukaryotic tree. Their morphology is more poorly studied, and here we focus on their cellular organization and how it compares with that of other supergroups. These small eukaryovorous flagellates exhibit several ultrastructural features that are also found in a subset of taxa from a wide variety of deep-branching lineages (Stramenopiles, Alveolata, Hemimastigophora, Malawimonadidae, Discoba and Metamonada), including vesicles beneath the plasmalemma, two opposing vanes on the flagella, a ventral feeding groove and a fibrillar system resembling the excavate type.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!